β-amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria

被引:166
作者
Canevari, L [1 ]
Clark, JB [1 ]
Bates, TE [1 ]
机构
[1] Inst Neurol, Dept Neurochem, London WC1N 3BG, England
基金
英国医学研究理事会;
关键词
amyloid; Alzheimer's disease; mitochondrion; respiratory chain; cytochrome oxidase; free radical;
D O I
10.1016/S0014-5793(99)01028-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Defects in mitochondrial oxidative metabolism, in particular decreased activity of cytochrome c oxidase, have been demonstrated in Alzheimer's disease, and after the expression of the amyloid precursor protein (APP) in cultured cells, suggesting that mitochondria might be involved in beta-amyloid toxicity. Recent evidence suggests that the proteolysis of APP to generate beta-amyloid is at least in part intracellular, preceding the deposition of extracellular fibrils. We have therefore investigated the effect of incubation of isolated rat brain mitochondria with the beta-amyloid fragment 25-35 (100 mu M) on the activities of the mitochondrial respiratory chain complexes I, II-Ill, IV (cytochrome c oxidase) and citrate synthase, The peptide caused a rapid, dose-dependent decrease in the activity of complex IV, while it had no effect on the activities on any of the other enzymes tested. The reverse sequence peptide (35-25) had no effect on any of the activities measured. We conclude that inhibition of mitochondrial complex IV might be a contributing factor to the pathogenesis of Alzheimer's disease. (C) 1999 Federation of European Biochemical Societies.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 37 条
[1]   Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle [J].
Askanas, V ;
McFerrin, J ;
Baque, S ;
Alvarez, RB ;
Sarkozi, E ;
Engel, WK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (03) :1314-1319
[2]   VITAMIN-E PROTECTS NERVE-CELLS FROM AMYLOID BETA-PROTEIN TOXICITY [J].
BEHL, C ;
DAVIS, J ;
COLE, GM ;
SCHUBERT, D .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1992, 186 (02) :944-950
[3]   AMYLOID-BETA PEPTIDE INDUCES NECROSIS RATHER THAN APOPTOSIS [J].
BEHL, C ;
DAVIS, JB ;
KLIER, FG ;
SCHUBERT, D .
BRAIN RESEARCH, 1994, 645 (1-2) :253-264
[4]   CHARACTERIZATION OF THE CELLULAR REDUCTION OF 3-(4,5-DIMETHYLTHIAZOL-2-YL)-2,5-DIPHENYLTETRAZOLIUM BROMIDE (MTT) - SUBCELLULAR-LOCALIZATION, SUBSTRATE DEPENDENCE, AND INVOLVEMENT OF MITOCHONDRIAL ELECTRON-TRANSPORT IN MTT REDUCTION [J].
BERRIDGE, MV ;
TAN, AS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 303 (02) :474-482
[5]   BETA-AMYLOID PEPTIDE FREE-RADICAL FRAGMENTS INITIATE SYNAPTOSOMAL LIPOPEROXIDATION IN A SEQUENCE-SPECIFIC FASHION - IMPLICATIONS TO ALZHEIMERS-DISEASE [J].
BUTTERFIELD, DA ;
HENSLEY, K ;
HARRIS, M ;
MATTSON, M ;
CARNEY, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 200 (02) :710-715
[6]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[7]   DISTRIBUTION OF BRAIN CYTOCHROME-OXIDASE ACTIVITY IN VARIOUS NEURODEGENERATIVE DISEASES [J].
CHAGNON, P ;
BETARD, C ;
ROBITAILLE, Y ;
CHOLETTE, A ;
GAUVREAU, D .
NEUROREPORT, 1995, 6 (05) :711-715
[8]  
DYRKS T, 1992, J BIOL CHEM, V267, P18210
[9]  
GABUZDA D, 1994, J BIOL CHEM, V269, P13623
[10]   NORDIHYDROGUAIARETIC ACID PROTECTS HIPPOCAMPAL-NEURONS AGAINST AMYLOID BETA-PEPTIDE TOXICITY, AND ATTENUATES FREE-RADICAL AND CALCIUM ACCUMULATION [J].
GOODMAN, Y ;
STEINER, MR ;
STEINER, SM ;
MATTSON, MP .
BRAIN RESEARCH, 1994, 654 (01) :171-176