Alternating locking ratios in imperfect phase synchronization

被引:115
作者
Zaks, MA [1 ]
Park, EH [1 ]
Rosenblum, MG [1 ]
Kurths, J [1 ]
机构
[1] Univ Potsdam, Inst Phys, D-14415 Potsdam, Germany
关键词
D O I
10.1103/PhysRevLett.82.4228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In periodically driven chaotic dynamical systems with a broad distribution of intrinsic time scales, perfect phase synchronization cannot be reached. Long segments of evolution during which the phase of a chaotic variable follows the phase of the driving force are interrupted by short segments of phase drift. We demonstrate that this drift is another short-lived synchronized state; its onset is caused by the passage near the long unstable periodic orbits whose frequencies are locked by external force in ratios different from 1:1. [S0031-9007(99)09190-5].
引用
收藏
页码:4228 / 4231
页数:4
相关论文
共 39 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[3]   RECYCLING OF STRANGE SETS .2. APPLICATIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :361-386
[4]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[5]  
Blekhman II., 1971, Synchronization of dynamical systems[M]
[6]   PERIODIC ORBIT ANALYSIS OF THE LORENZ ATTRACTOR [J].
ECKHARDT, B ;
OTT, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (02) :259-266
[7]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[8]  
Gabor D., 1946, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, V93, P58, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[9]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSION OF CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1987, 36 (07) :3522-3524
[10]  
Hayashi C., 1964, NONLINEAR OSCILLATIO