Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage

被引:209
作者
Fu, Yongsheng [1 ,2 ]
Chen, Qun [1 ]
He, Mingyang [1 ]
Wan, Yunhai [3 ]
Sun, Xiaoqiang [1 ]
Xia, Hui [3 ]
Wang, Xin [2 ]
机构
[1] Changzhou Univ, Key Lab Fine Petrochem Engn, Changzhou 213164, Peoples R China
[2] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
关键词
HIGH-PERFORMANCE; ANODE MATERIAL; REVERSIBLE CAPACITY; CO3O4; NANOPARTICLES; OXIDE; COMPOSITE; DEGRADATION; REDUCTION; TIO2; TEMPLATE;
D O I
10.1021/ie301347j
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A straightforward strategy is designed for the fabrication of CuFe2O4-graphene heteroarchitecture via a one-step hydrothermal route to allow multifunctional properties, i.e., magnetic cycling, high photocatalytic activity under visible light irradiation, and excellent electrochemical behaviors for use as the anode in lithium-ion batteries (LIBs). Transmission electron microscopy (TEM) observations indicate that graphene sheets are exfoliated and decorated with hexagonal CuFe2O4 nanoflakes. The photocatalytic activity measurements demonstrate that the combination of CuFe2O4 and graphene results in a dramatic conversion of the inert CuFe2O4 into a highly active catalyst for the degradation of methylene blue (MB) under visible light irradiation. CuFe2O4 nanoparticles themselves have excellent magnetic properties, which makes the CuFe2O4-graphene heteroarchitecture magnetically recyclable in a suspension system. It should be pointed out that the CuFe2O4-graphene (with 25 wt % graphene) heteroarchitecture as anode material for LIBs shows a high specific reversible capacity up to 1165 mAh g(-1) with good cycling stability and rate capability. The superior photocatalytic activity and electrochemical performance of the CuFe2O4-graphene nanocomposite can be attributed to its unique heteroarchitechture, which provides the remarkable synergistic effect between the CuFe2O4 nanoflakes and the graphene sheets.
引用
收藏
页码:11700 / 11709
页数:10
相关论文
共 59 条
[1]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[2]   Graphene Nanomesh by ZnO Nanorod Photocatalysts [J].
Akhavan, Omid .
ACS NANO, 2010, 4 (07) :4174-4180
[3]   57Fe Mossbauer Spectroscopy and electron Microscopy study of metal extraction from CuFe2O4 electrodes in lithium cells [J].
Bomio, Mauricio ;
Lavela, Pedro ;
Tirado, Jose Luis .
CHEMPHYSCHEM, 2007, 8 (13) :1999-2007
[4]   Using Collagen Fiber as a Template to Synthesize TiO2 and Fex/TiO2 Nanofibers and Their Catalytic Behaviors on the Visible Light-Assisted Degradation of Orange II [J].
Cai, Li ;
Liao, Xuepin ;
Shi, Bi .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (07) :3194-3199
[5]   Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping [J].
Cai, Wandong ;
Chen, Feng ;
Shen, Xingxing ;
Chen, Lijing ;
Zhang, Jinlong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 101 (1-2) :160-168
[6]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[7]   Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction [J].
Chen, Chao ;
Cai, Weimin ;
Long, Mingce ;
Zhou, Baoxue ;
Wu, Yahui ;
Wu, Deyong ;
Feng, Yujie .
ACS NANO, 2010, 4 (11) :6425-6432
[8]   From Graphene to Metal Oxide Nanolamellas: A Phenomenon of Morphology Transmission [J].
Chen, Sheng ;
Zhu, Junwu ;
Wang, Xin .
ACS NANO, 2010, 4 (10) :6212-6218
[9]   Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether [J].
Faungnawakij, Kajornsak ;
Shimoda, Naohiro ;
Fukunaga, Tetsuya ;
Kikuchi, Ryuji ;
Eguchi, Koichi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 92 (3-4) :341-350
[10]   Effect of Thermal Treatment on Activity and Durability of CuFe2O4-Al2O3 Composite Catalysts for Steam Reforming of Dimethyl Ether [J].
Faungnawakij, Kajornsak ;
Kikuchi, Ryuji ;
Shimoda, Naohiro ;
Fukunaga, Tetsuya ;
Eguchi, Koichi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (48) :9314-9317