Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

被引:40
作者
Jenkins, S. [1 ,2 ]
Millar, R. J. [2 ,3 ]
Leach, N. [1 ,2 ]
Allen, M. R. [1 ,2 ]
机构
[1] Univ Oxford, Dept Phys, Oxford, England
[2] Univ Oxford, Environm Change Inst, Oxford, England
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
基金
英国自然环境研究理事会;
关键词
greenhouse gas metric; cumulative carbon budget; forcing equivalent index; climate stabilization; CARBON-DIOXIDE; TARGETS; CO2;
D O I
10.1002/2017GL076173
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissionsthe CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional CO2-equivalent emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900600GtCO(2)-fe, increasing at a rate of 679.5GtCO(2)-fe/yr. A TCRE range of 0.8-2.5 degrees Cper 1,000 GtC implies a total budget for 0.6 degrees C of additional warming above the present decade of 880-2,750GtCO(2)-fe, with 1,290 GtCO(2)-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19years' CO2-fe emissions at the current rate. Plain Language Summary The relationship between the global average temperature anomaly (the difference between the global average current temperature and the global average preindustrial temperature) and the total quantity of CO2 emissions released is linear. However, contributions from other greenhouse gases mean that this simple relationship is lost. We propose a new way of comparing greenhouse gases by converting them into a forcing equivalent quantity of CO2. This method means that the linear relationship between total CO2-forcing-equivalent (CO2-fe) emissions and warming remains linear. This new greenhouse gas metric allows us to estimate the total CO2-forcing-equivalent emissions released over the industrialized period (1870-2015) as 2,900600 GtCO(2)-fe, and increasing at a rate of 679.5 GtCO(2)-fe/yr. Budgets of remaining CO2-forcing-equivalent emissions to key temperature stabilization goals are also estimated, showing that the CO2-fe emissions metric is a useful way to characterize budgets to key temperature stabilization goals when considering multigas mitigation pathways.
引用
收藏
页码:2795 / 2804
页数:10
相关论文
共 32 条
[1]  
Allen MR, 2016, NAT CLIM CHANGE, V6, P773, DOI [10.1038/nclimate2998, 10.1038/NCLIMATE2998]
[2]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[3]   Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models [J].
Arora, Vivek K. ;
Boer, George J. ;
Friedlingstein, Pierre ;
Eby, Michael ;
Jones, Chris D. ;
Christian, James R. ;
Bonan, Gordon ;
Bopp, Laurent ;
Brovkin, Victor ;
Cadule, Patricia ;
Hajima, Tomohiro ;
Ilyina, Tatiana ;
Lindsay, Keith ;
Tjiputra, Jerry F. ;
Wu, Tongwen .
JOURNAL OF CLIMATE, 2013, 26 (15) :5289-5314
[4]  
Center for International Climate Research (CICERO), 2013, PREC DRIV RESP MOD I
[5]   Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing [J].
Etminan, M. ;
Myhre, G. ;
Highwood, E. J. ;
Shine, K. P. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (24) :12614-12623
[6]   Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models [J].
Forster, Piers M. ;
Andrews, Timothy ;
Good, Peter ;
Gregory, Jonathan M. ;
Jackson, Lawrence S. ;
Zelinka, Mark .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (03) :1139-1150
[7]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353
[8]   Implications of possible interpretations of 'greenhouse gas balance' in the Paris Agreement [J].
Fuglestvedt, J. ;
Rogelj, J. ;
Millar, R. J. ;
Allen, M. ;
Boucher, O. ;
Cain, M. ;
Forster, P. M. ;
Kriegler, E. ;
Shindell, D. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2119)
[9]   Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations [J].
Gillett, Nathan P. ;
Arora, Vivek K. ;
Matthews, Damon ;
Allen, Myles R. .
JOURNAL OF CLIMATE, 2013, 26 (18) :6844-6858
[10]   The inconstancy of the transient climate response parameter under increasing CO2 [J].
Gregory, J. M. ;
Andrews, T. ;
Good, P. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2054)