The Occurrence of the psbS Gene Product in Chlamydomonas reinhardtii and in Other Photosynthetic Organisms and Its Correlation with Energy Quenching

被引:77
作者
Bonente, Giulia [1 ,2 ]
Passarini, Francesca [1 ,2 ]
Cazzaniga, Stefano [2 ]
Mancone, Carmine [3 ]
Buia, Maria Cristina [4 ]
Tripodi, Marco [3 ,5 ]
Bassi, Roberto [2 ]
Caffarri, Stefano [1 ]
机构
[1] Univ Aix Marseille 2, CNRS, CEA, Lab Genet & Biophys Plantes,UMR 6191, F-13284 Marseille 07, France
[2] Univ Verona, Dipartimento Sci & Tecnol, I-37100 Verona, Italy
[3] IRCCS, Natl Inst Infect Dis L Spallanzani, Rome, Italy
[4] Stn Zool A Dohrn, Benth Ecol Lab, I-80121 Naples, Italy
[5] Univ Roma La Sapienza, Dipartimento Biotecnol Cellulari & Ematol, Fdn Ist Pasteur Cenci Bolognetti, Rome, Italy
关键词
D O I
10.1111/j.1751-1097.2008.00456.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.
引用
收藏
页码:1359 / 1370
页数:12
相关论文
共 56 条
[1]   In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation [J].
Alboresi, Alessandro ;
Caffarri, Stefano ;
Nogue, Fabien ;
Bassi, Roberto ;
Morosinotto, Tomas .
PLOS ONE, 2008, 3 (04)
[2]   Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness [J].
Andersson, J ;
Wentworth, M ;
Walters, RG ;
Howard, CA ;
Ruban, AV ;
Horton, P ;
Jansson, S .
PLANT JOURNAL, 2003, 35 (03) :350-361
[3]   Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Chlamydomonas reinhardtii [J].
Anwaruzzaman, M ;
Chin, BL ;
Li, XP ;
Lohr, M ;
Martinez, DA ;
Niyogi, KK .
PHOTOSYNTHESIS RESEARCH, 2004, 82 (03) :265-276
[4]   In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants [J].
Aspinall-O'Dea, M ;
Wentworth, M ;
Pascal, A ;
Robert, B ;
Ruban, A ;
Horton, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16331-16335
[5]   Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna [J].
Avenson, Thomas J. ;
Ahn, Tae Kyu ;
Zigmantas, Donatas ;
Niyogi, Krishna K. ;
Li, Zhirong ;
Ballottari, Matteo ;
Bassi, Roberto ;
Fleming, Graham R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (06) :3550-3558
[6]   Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation [J].
Ballottari, Matteo ;
Dall'Osto, Luca ;
Morosinotto, Tomas ;
Bassi, Roberto .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (12) :8947-8958
[7]   Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress [J].
Baroli, I ;
Do, AD ;
Yamane, T ;
Niyogi, KK .
PLANT CELL, 2003, 15 (04) :992-1008
[8]   LIGHT-HARVESTING CHLOROPHYLL-A/B-PROTEINS (LHCII) POPULATIONS IN PHOSPHORYLATED MEMBRANES [J].
BASSI, R ;
RIGONI, F ;
BARBATO, R ;
GIACOMETTI, GM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 936 (01) :29-38
[9]   Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls [J].
Bassi, R ;
Caffarri, S .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (2-3) :243-256
[10]   Light- and pH-dependent structural changes in the PsbS subunit of photosystem II [J].
Bergantino, E ;
Segalla, A ;
Brunetta, A ;
Teardo, E ;
Rigoni, F ;
Giacometti, GM ;
Szabò, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :15265-15270