Scientific and commercial interest in oligosaccharides is increasing, but their availability is limited as production relies on chemical or chemo-enzymatic synthesis. In search for a more economical, alternative procedure, we have investigated the possibility of producing specific oligosaccharides in E. coli that express the appropriate glycosyltransferases. The Azorhizobium chitin pentaose synthase NodC (a beta(1,4)GlcNAc-transferase), and the Neisseria beta(1,4)galactosyltransferase LgtB, were co-expressed in E. coli. The major oligosaccharide isolated from the recombinant strain, was subjected to LC-MS, FAB-MS and NMR analysis, and identified as beta Gal(1,4)[beta GlcNAc(1,4)](4)GlcNAc. High cell density culture yielded more than 1.0 gr of the hexasaccharide per liter of culture. The compound was found to be an acceptor in vitro for beta Gal(1,4)GlcNAc alpha(1,3)galactosyltransferase, which suggests that the expression of additional glycosyltransferases in E. coli will allow the production of more complex oligosaccharides.