CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel

被引:82
作者
Hertz, Daniel L. [1 ,2 ]
Motsinger-Reif, Alison A. [2 ,3 ,4 ]
Drobish, Amy [5 ]
Winham, Stacey J. [4 ]
McLeod, Howard L. [1 ,2 ,5 ,6 ]
Carey, Lisa A. [5 ,6 ]
Dees, E. Claire [5 ,6 ]
机构
[1] Univ N Carolina, Div Pharmacotherapy & Expt Therapeut, UNC Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, UNC Inst Pharmacogen & Individualized Therapy, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[5] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Dept Med, Div Hematol Oncol, Sch Med, Chapel Hill, NC 27599 USA
关键词
Paclitaxel; CYP2C8*3; Pharmacogenetics; Neoadjuvant breast cancer therapy; Clinical complete response; IN-VITRO; HAPLOTYPE RECONSTRUCTION; PERIPHERAL NEUROPATHY; CYP2C8; POLYMORPHISMS; OVARIAN-CANCER; PHASE-III; ASSOCIATION; CHEMOTHERAPY; GENOTYPE; PHARMACOKINETICS;
D O I
10.1007/s10549-012-2054-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Paclitaxel is one of the most frequently used chemotherapeutic agents for the treatment of breast cancer patients. Using a candidate gene approach, we hypothesized that polymorphisms in genes relevant to the metabolism and transport of paclitaxel are associated with treatment efficacy and toxicity. Patient and tumor characteristics and treatment outcomes were collected prospectively for breast cancer patients treated with paclitaxel-containing regimens in the neoadjuvant setting. Treatment response was measured before and after each phase of treatment by clinical tumor measurement and categorized according to RECIST criteria, while toxicity data were collected from physician notes. The primary endpoint was achievement of clinical complete response (cCR) and secondary endpoints included clinical response rate (complete response + partial response) and grade 3+ peripheral neuropathy. The genotypes and haplotypes assessed were CYP1B1*3, CYP2C8*3, CYP3A4*1B/CYP3A5*3C, and ABCB1*2. A total of 111 patients were included in this study. Overall, cCR was 30.1 % to the paclitaxel component. CYP2C8*3 carriers (23/111, 20.7 %) had higher rates of cCR (55 % vs. 23 %; OR = 3.92 [95 % CI: 1.46-10.48], corrected p = 0.046). In the secondary toxicity analysis, we observed a trend toward greater risk of severe neuropathy (22 % vs. 8 %; OR = 3.13 [95 % CI: 0.89-11.01], uncorrected p = 0.075) in subjects carrying the CYP2C8*3 variant. Other polymorphisms interrogated were not significantly associated with response or toxicity. Patients carrying CYP2C8*3 are more likely to achieve clinical complete response from neoadjuvant paclitaxel treatment, but may also be at increased risk of experiencing severe peripheral neurotoxicity.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 55 条
[21]  
Garsa Adam A, 2005, BMC Med Genet, V6, P19
[22]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796
[23]   mdr-1 single nucleotide polymorphisms in ovarian cancer tissue:: G2677T/A correlates with response to paclitaxel chemotherapy [J].
Gréen, H ;
Söderkvist, P ;
Rosenberg, P ;
Horvath, G ;
Peterson, C .
CLINICAL CANCER RESEARCH, 2006, 12 (03) :854-859
[24]   Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel [J].
Henningsson, A ;
Marsh, S ;
Loos, WJ ;
Karlsson, MO ;
Garsa, A ;
Mross, K ;
Mielke, S ;
Viganò, L ;
Locatelli, A ;
Verweij, J ;
Sparreboom, A ;
McLeod, HL .
CLINICAL CANCER RESEARCH, 2005, 11 (22) :8097-8104
[25]   Population pharmacokinetic modelling of unbound and total plasma concentrations of paclitaxel in cancer patients [J].
Henningsson, A ;
Sparreboom, A ;
Sandström, M ;
Freijs, A ;
Larsson, R ;
Bergh, J ;
Nygren, P ;
Karlsson, MO .
EUROPEAN JOURNAL OF CANCER, 2003, 39 (08) :1105-1114
[26]   UGT1A1*28 genotype and irinotecan-induced neutropenia: Dose matters [J].
Hoskins, Janelle M. ;
Goldberg, Richard M. ;
Qu, Pingping ;
Ibrahim, Joseph G. ;
McLeod, Howard L. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (17) :1290-1295
[27]   Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: A meta-analysis [J].
Hu, Zhe-Yi ;
Yu, Qj ;
Zhao, Yuan-Sheng .
EUROPEAN JOURNAL OF CANCER, 2010, 46 (10) :1856-1865
[28]  
Klein TE, 2009, NEW ENGL J MED, V360, P753
[29]   Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity [J].
Leskelae, S. ;
Jara, C. ;
Leandro-Garcia, L. J. ;
Martinez, A. ;
Garcia-Donas, J. ;
Hernando, S. ;
Hurtado, A. ;
Vicario, J. C. C. ;
Montero-Conde, C. ;
Landa, I. ;
Lopez-Jimenez, E. ;
Cascon, A. ;
Milne, R. L. ;
Robledo, M. ;
Rodriguez-Antona, C. .
PHARMACOGENOMICS JOURNAL, 2011, 11 (02) :121-129
[30]   Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer [J].
Marsh, S. ;
Somlo, G. ;
Li, X. ;
Frankel, P. ;
King, C. R. ;
Shannon, W. D. ;
McLeod, H. L. ;
Synold, T. W. .
PHARMACOGENOMICS JOURNAL, 2007, 7 (05) :362-365