Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing

被引:48
作者
Tulin, A [1 ]
Naumova, NM [1 ]
Menon, AK [1 ]
Spradling, AC [1 ]
机构
[1] Carnegie Inst Sci, Howard Hughes Med Inst, Dept Embryol, Baltimore, MD 21218 USA
关键词
D O I
10.1534/genetics.105.049239
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Protein ADP ribosylation catalyzed by cellular poly (ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly (ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin! in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 36 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]  
Åström SU, 2003, GENETICS, V163, P931
[3]   DSIR2 and dHDAC6:: Two novel, inhibitor-resistant deacetylases in Drosophila melanogaster [J].
Barlow, AL ;
van Drunen, CM ;
Johnson, CA ;
Tweedie, S ;
Bird, A ;
Turner, BM .
EXPERIMENTAL CELL RESEARCH, 2001, 265 (01) :90-103
[4]  
Casso D, 2000, MECH DEVELOP, V91, P449
[5]   CHROMATIN STRUCTURES AND TRANSCRIPTION OF RDNA IN YEAST SACCHAROMYCES-CEREVISIAE [J].
DAMMANN, R ;
LUCCHINI, R ;
KOLLER, T ;
SOGO, JM .
NUCLEIC ACIDS RESEARCH, 1993, 21 (10) :2331-2338
[6]  
de Murcia G, 2000, DNA DAMAGE STRESS SI
[7]   Linking chromatin function with metabolic networks:: Sir2 family of NAD+-dependent deacetylases [J].
Denu, JM .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) :41-48
[8]   Histone and chromatin cross-talk [J].
Fischle, W ;
Wang, YM ;
Allis, CD .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :172-183
[9]   Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity [J].
Frye, RA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 260 (01) :273-279
[10]   SIR2 is required for Polycomb silencing and is associated with an E(Z) histone methytransferase complex [J].
Furuyama, T ;
Banerjee, R ;
Breen, TR ;
Harte, PJ .
CURRENT BIOLOGY, 2004, 14 (20) :1812-1821