Chromatin remodeling enzymes rely on coenzymes derived from metabolic pathways, suggesting a tight synchronization among apparently diverse cellular processes. A unique example of this link is the recently described NAD(+)-dependent protein and/or histone deacetylases. The founding member of this family - yeast silent information regulator 2 (ySir2) - is involved in gene silencing, chromosomal stability and ageing. Sir2-like enzymes catalyze a reaction in which the cleavage of NAD(+)and histone and/or protein deacetylation are coupled to the formation of O-acetyl-ADP-ribose, a novel metabolite. The dependence of the reaction on both NAD(+) and the generation of this potential second messenger offers new clues to understanding the function and regulation of nuclear, cytoplasmic and mitochondrial Sir2-like enzymes.