Standing-wave total-internal-reflection fluorescence (SW-TIRF) microscopy uses a super-diffraction-limited standing evanescent wave to extract the high-spatial-frequency content of an object through a diffraction-limited optical imaging system. The effective point-spread function is better than a quarter of the emission wavelength. With a 1.45 numerical aperture objective and 532 nm excitation wavelength, a Rayleigh resolution of approximately 100 nm can be achieved, which is better than twice the resolution of conventional TIRF microscopy. This first experimental realization of SW-TIRF in an objective-launched geometry demonstrates the potential for extended resolution imaging at high speed by using wide-field microscopy. (c) 2006 Optical Society of America.
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA