Uptake of mannose-terminal glucocerebrosidase in cultured human cholinergic and dopaminergic neuron cell lines

被引:15
作者
Schueler, U
Kaneski, C
Murray, G
Sandhoff, K
Brady, RO
机构
[1] NINCDS, Dev & Metab Neurol Branch, NIH, Bethesda, MD 20892 USA
[2] Univ Bonn, Inst Chem & Biochem, D-5300 Bonn, Germany
关键词
Gaucher disease; glucocerebrosidase delivery to neurons;
D O I
10.1023/A:1014915430398
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enzyme replacement therapy has been shown to be particularly effective for patients with type I (non-neuronopathic) Gaucher disease. However, intravenously administered glucocerebrosidase does not reverse or halt the progression of brain damage in patients with type 2 (acute neuronopathic) Gaucher disease. A previous investigation revealed that intracerebral infusion of mannose-terminal glucocerebrosidase was safe in experimental animals. The enzyme had a comparatively long half-life in the brain. It was transported by convection from the site of infusion along white matter fiber tracts to the cerebral cortex where it was endocytosed by neurons. In anticipation of intracerebral administration of mannose-terminal glucocerebrosidase to patients with type 2 Gaucher disease, it was important to learn the mechanism involved in its cellular uptake. We therefore compared the endocytosis of this enzyme by J774 macrophage cells with that in two human neuronal cell lines and a human astrocyte cell line. Mannose-terminal glucocerebrosidase was taken up by cholinergic LA-N-2 cells, but to a much lower extent than by macrophages. Considerably less of the enzyme was endocytosed by dopaminergic SH-SY5Y cells. It was not taken up by NHA astrocytes. The findings provide encouragement for an exploration of intracerebral administration of glucocerebrosidase in patients with type 2 Gaucher disease.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 30 条
[11]  
2-2
[12]  
Neudorfer O, 1996, QJM-MON J ASSOC PHYS, V89, P691
[13]   BETA-GLUCOSIDASE INHIBITION IN MURINE PERITONEAL-MACROPHAGES BY CONDURITOL-B-EPOXIDE - AN INVITRO MODEL OF THE GAUCHER CELL [J].
NEWBURG, DS ;
YATZIV, S ;
MCCLUER, RH ;
RAGHAVAN, S .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 877 (01) :121-126
[14]   ACCUMULATION OF GLUCOSYLCERAMIDE AND GLUCOSYLSPHINGOSINE (PSYCHOSINE) IN CEREBRUM AND CEREBELLUM IN INFANTILE AND JUVENILE GAUCHER DISEASE [J].
NILSSON, O ;
SVENNERHOLM, L .
JOURNAL OF NEUROCHEMISTRY, 1982, 39 (03) :709-718
[15]  
PEDRALINOY G, 1982, CANCER RES, V42, P3810
[16]   HUMAN CLONAL CELL-LINE MODEL OF DIFFERENTIATING NEURONS [J].
PEREZPOLO, JR ;
WERRBACHPEREZ, K ;
TIFFANYCASTIGLIONI, E .
DEVELOPMENTAL BIOLOGY, 1979, 71 (02) :341-355
[17]  
Prows CA, 1997, AM J MED GENET, V71, P16, DOI 10.1002/(SICI)1096-8628(19970711)71:1<16::AID-AJMG3>3.3.CO
[18]  
2-U
[19]   ACETYLCHOLINE SYNTHESIS AND SECRETION BY LA-N-2 HUMAN NEURO-BLASTOMA CELLS [J].
RICHARDSON, UI ;
LISCOVITCH, M ;
BLUSZTAJN, JK .
BRAIN RESEARCH, 1989, 476 (02) :323-331
[20]   Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher's disease [J].
Schiffmann, R ;
Heyes, MP ;
Aerts, JM ;
Dambrosia, JM ;
Patterson, MC ;
DeGraba, T ;
Parker, CC ;
Zirzow, GC ;
Oliver, K ;
Tedeschi, G ;
Brady, RO ;
Barton, NW ;
Nagineni, C ;
Kaneski, CR ;
Murray, GJ ;
Higgins, JJ ;
Tournay, A ;
Banerjee, TK ;
Kreps, C ;
Scott, LJC ;
McKee, MA ;
Crutchfield, K ;
Frei, K .
ANNALS OF NEUROLOGY, 1997, 42 (04) :613-621