Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp PCC7942

被引:115
作者
Price, GD
Maeda, S
Omata, T
Badger, MR
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Mol Plant Physiol Grp, Canberra, ACT, Australia
[2] Nagoya Univ, Grad Sch BioAgr Sci, Mol Plant Physiol Lab, Nagoya, Aichi, Japan
关键词
carboxysomes; CO2 concentrating mechanism; cyanobacteria; genes; photosynthesis; transporters;
D O I
10.1071/PP01229
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cyanobacteria (blue-green algae) have evolved a remarkable environmental adaptation for survival at limiting CO2 concentrations. The adaptation is known as a CO2 concentrating mechanism, and functions to actively transport and accumulate inorganic carbon (Ci; HCO3- and CO2) within the cell. Thereafter, this Ci pool is utilised to provide elevated CO2 concentrations around the primary CO2 fixing enzyme, Rubisco, which is encapsulated in a unique micro-compartment known as the carboxysome. Recently, significant progress has been gained in understanding the different types of Ci transport in cyanobacteria. This semi-review centres on the model cyanobacterium, Synechococcus sp. PCC7942, which possesses at least four distinct modes of Ci uptake when grown under Ci limitation, each possessing a high degree of functional redundancy. The four modes so far identified are: (i) BCT1, an inducible, high affinity HCO3- transporter of the bacterial ATP binding cassette transporter family, encoded by cmpABCD; (ii) a constitutive, Na+-dependent HCO3- transport system that can be allosterically activated (possibly by phosphorylation) in as little as 10 min; (iii) and (iv) two CO2 uptake systems, one constitutive and the other inducible, based on specialised forms of thylakoid-based, type 1, NAD(P)H dehydrogenase complexes (NDH-1). Here, we forward a speculative model that proposes that two unique proteins, ChpX and ChpY, possess CO2 hydration activity in the light, and when coupled to photosynthetic electron transport through the two specialised NDH-1 complexes, result in net hydration of CO2 to HCO3- as a crucial component of the CO2 uptake process.
引用
收藏
页码:131 / 149
页数:19
相关论文
共 80 条
[1]  
[Anonymous], 1985, INORGANIC CARBON UPT
[2]  
[Anonymous], 1987, PROGR PHOTOSYNTHESIS
[3]   PHOTOSYNTHESIS AND INORGANIC CARBON USAGE BY THE MARINE CYANOBACTERIUM, SYNECHOCOCCUS SP [J].
BADGER, MR ;
ANDREWS, TJ .
PLANT PHYSIOLOGY, 1982, 70 (02) :517-523
[4]  
BADGER MR, 1992, PHYSIOL PLANTARUM, V84, P606, DOI 10.1111/j.1399-3054.1992.tb04711.x
[5]   THE ROLE OF CARBONIC-ANHYDRASE IN PHOTOSYNTHESIS [J].
BADGER, MR ;
PRICE, GD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :369-392
[6]   CARBONIC-ANHYDRASE ACTIVITY ASSOCIATED WITH THE CYANOBACTERIUM SYNECHOCOCCUS PCC7942 [J].
BADGER, MR ;
PRICE, GD .
PLANT PHYSIOLOGY, 1989, 89 (01) :51-60
[7]  
BADGER MR, 1987, BIOCH PLANTS COMPREH, V10, P219
[8]   ATMOSPHERIC CARBON-DIOXIDE LEVELS OVER PHANEROZOIC TIME [J].
BERNER, RA .
SCIENCE, 1990, 249 (4975) :1382-1386
[9]   A putative HCO-3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942 [J].
Bonfil, DJ ;
Ronen-Tarazi, M ;
Sültemeyer, D ;
Lieman-Hurwitz, J ;
Schatz, D ;
Kaplan, A .
FEBS LETTERS, 1998, 430 (03) :236-240
[10]   Proton translocation in the respiratory chain involving ubiquinone - a hypothetical semiquinone switch mechanism for complex I [J].
Brandt, U .
BIOFACTORS, 1999, 9 (2-4) :95-101