Monte Carlo simulation of the antiferromagnetic four-state Potts model on simple cubic and body-centered-cubic lattices

被引:14
作者
Itakura, M [1 ]
机构
[1] Ctr Promot Computat Sci & Engn, Japan Atom Energy Res Inst, Meguro Ku, Tokyo 153, Japan
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 09期
关键词
D O I
10.1103/PhysRevB.60.6558
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase transition of four-state antiferromagnetic Potts model on simple cubic and body-centered-cubic lattice is studied by cluster Monte Carlo simulations of finite systems up to 96(3) lattice sizes. The result indicates that the size 963 is still sufficient to extract asymptotic behavior. However, if one assumes that both models are well described by the usual Ginzburg-Landau Hamiltonian, the result is consistent viith the prediction of the field-theoretical analysis that the phase transition is first-order one. [S0163-1829(99)04033-3].
引用
收藏
页码:6558 / 6565
页数:8
相关论文
共 27 条
[11]   3-STATE ANTIFERROMAGNETIC POTTS-MODEL IN 3 DIMENSIONS - UNIVERSALITY AND CRITICAL AMPLITUDES [J].
GOTTLOB, AP ;
HASENBUSCH, M .
PHYSICA A, 1994, 210 (1-2) :217-236
[12]   Rotationally symmetric ordered phase in the three-state antiferromagnetic Potts model [J].
Heilmann, RK ;
Wang, JS ;
Swendsen, RH .
PHYSICAL REVIEW B, 1996, 53 (05) :2210-2212
[13]   FINITE-SIZE SCALING STUDY OF THE 3-DIMENSIONAL CLASSICAL HEISENBERG-MODEL [J].
HOLM, C ;
JANKE, W .
PHYSICS LETTERS A, 1993, 173 (01) :8-12
[14]  
KISHIDA N, COMMUNICATION
[15]   EXACT 5-LOOP RENORMALIZATION-GROUP FUNCTIONS OF PHI(4)-THEORY WITH O(N)-SYMMETRICAL AND CUBIC INTERACTIONS - CRITICAL EXPONENTS UP TO EPSILON(5) [J].
KLEINERT, H ;
SCHULTEFROHLINDE, V .
PHYSICS LETTERS B, 1995, 342 (1-4) :284-296
[16]   CRITICAL EXPONENTS OF THE 3D ANTIFERROMAGNETIC 3-STATE POTTS-MODEL USING THE COHERENT-ANOMALY METHOD [J].
KOLESIK, M ;
SUZUKI, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 216 (04) :469-477
[17]   On the low-temperature ordering of the 3D antiferromagnetic three-state Potts model [J].
Kolesik, M ;
Suzuki, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :6543-6555
[18]   LONG-RANGE ORDER FOR ANTIFERROMAGNETIC POTTS MODELS [J].
KOTECKY, R .
PHYSICAL REVIEW B, 1985, 31 (05) :3088-3092
[19]   LAGGED-FIBONACCI RANDOM NUMBER GENERATORS ON PARALLEL COMPUTERS [J].
MAKINO, J .
PARALLEL COMPUTING, 1994, 20 (09) :1357-1367
[20]   Modified Borel summation of divergent series and critical-exponent estimates for an N-vector cubic model in three dimensions from five-loop ε expansions [J].
Mudrov, AI ;
Varnashev, KB .
PHYSICAL REVIEW E, 1998, 58 (05) :5371-5375