Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low thermal boundary conductance

被引:20
作者
Jin, Yansha [1 ]
Nola, Sam [1 ]
Pipe, Kevin P. [1 ]
Shtein, Max [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
CONDUCTIVITY; COMPOSITES;
D O I
10.1063/1.4828882
中图分类号
O59 [应用物理学];
学科分类号
摘要
In organic semiconductors, the Wiedemann-Franz law is often violated, potentially enabling independent control over electrical and thermal conductivities, as observed here with the organic-metal nanocomposites. This effect is attributed to the interface between metal particles and organic matrix materials impeding thermal transport. Thermal conductivity (k(th)) can be decoupled from electrical conductivity (sigma(e)) in the composite of an archetypal organic semiconductor (Copper Phthalocyanine, CuPc) and silver, with thermal boundary conductance as low as 13 MW/m(2)K at the interface. We show that k(th) decreases with volume fraction occupied by silver nanoparticles (x(Ag)%) in the dilute limit, reaching a minimum value at a concentration x(Ag)%(min) = 18%, while sigma(e) exceeds that of the pure organic semiconductor. Further modeling indicates that ZT values of organic-inorganic nanocomposites can be potentially enhanced 10 fold around x(f)%(min), compared to ZT of the pure compounds. These findings suggest a novel pathway for the future design of organic thermoelectric materials. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 26 条
[1]   PROPERTIES OF THE ORGANIC-ON-INORGANIC SEMICONDUCTOR BARRIER CONTACT DIODES IN/PTCDI/P-SI AND AG/CUPC/P-SI [J].
ANTOHE, S ;
TOMOZEIU, N ;
GOGONEA, S .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1991, 125 (01) :397-408
[2]   Data reduction in 3ω method for thin-film thermal conductivity determination [J].
Borca-Tasciuc, T ;
Kumar, AR ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2139-2147
[3]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[4]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[5]  
Das R., 2009, J. Nanotechnol, V5, P1
[6]   Computational modeling of the thermal conductivity of single-walled carbon nanotube - polymer composites [J].
Duong, Hai M. ;
Papavassiliou, Dimitrios V. ;
Mullen, Kieran J. ;
Maruyama, Shigeo .
NANOTECHNOLOGY, 2008, 19 (06)
[7]   EFFECTIVE THERMAL-CONDUCTIVITY OF COMPOSITES WITH INTERFACIAL THERMAL BARRIER RESISTANCE [J].
HASSELMAN, DPH ;
JOHNSON, LF .
JOURNAL OF COMPOSITE MATERIALS, 1987, 21 (06) :508-515
[8]   Testing the minimum thermal conductivity model for amorphous polymers using high pressure [J].
Hsieh, Wen-Pin ;
Losego, Mark D. ;
Braun, Paul V. ;
Shenogin, Sergei ;
Keblinski, Pawel ;
Cahill, David G. .
PHYSICAL REVIEW B, 2011, 83 (17)
[9]   Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement [J].
Huang, B. L. ;
Ni, Z. ;
Millward, A. ;
McGaughey, A. J. H. ;
Uher, C. ;
Kaviany, M. ;
Yaghi, O. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (3-4) :405-411
[10]   Thermal boundary resistance of copper phthalocyanine-metal interface [J].
Jin, Y. ;
Yadav, A. ;
Sun, K. ;
Sun, H. ;
Pipe, K. P. ;
Shtein, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (09)