Short RNAs repress translation after initiation in mammalian cells

被引:566
作者
Petersen, CP
Bordeleau, ME
Pelletier, J
Sharp, PA [1 ]
机构
[1] MIT, Canc Res Ctr, Cambridge, MA 02139 USA
[2] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[3] McGill Univ, Ctr Canc, Montreal, PQ H3G 1Y6, Canada
关键词
D O I
10.1016/j.molcel.2006.01.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are predicted to regulate 30% of mammalian protein-encoding genes by interactions with their 3' untranslated regions (UTRs). We use partially complementary siRNAs to investigate the mechanism by which miRNAs mediate translational repression in human cells. Repressed mRNAs are associated with polyribosomes that are engaged in translation elongation, as shown by puromycin sensitivity. The inhibition appears to be postinitiation because translation driven by the cap-independent processes of HCV IRES and CrPV IRES is repressed by short RNAs. Further, metabolic labeling suggests that silencing occurs before completion of the nascent polypeptide chain. In addition, silencing by short RNAs causes a decrease in translational readthrough at a stop codon, and ribosomes on repressed mRNAs dissociate more rapidly after a block of initiation of translation than those on control mRNAs. These results suggest that repression by short RNAs, and thus probably miRNAs, is primarily due to ribosome drop off during elongation of translation.
引用
收藏
页码:533 / 542
页数:10
相关论文
共 48 条
[1]   Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J].
Bagga, S ;
Bracht, J ;
Hunter, S ;
Massirer, K ;
Holtz, J ;
Eachus, R ;
Pasquinelli, AE .
CELL, 2005, 122 (04) :553-563
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[4]   LIGHT-MEDIATED CONTROL OF TRANSLATIONAL INITIATION OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE IN AMARANTH COTYLEDONS [J].
BERRY, JO ;
BREIDING, DE ;
KLESSIG, DF .
PLANT CELL, 1990, 2 (08) :795-803
[5]   DISSOCIATION OF MAMMALIAN POLYRIBOSOMES INTO SUBUNITS BY PUROMYCIN [J].
BLOBEL, G ;
SABATINI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (02) :390-&
[6]   Localization-dependent oskar protein accumulation: Control after the initiation of translation [J].
Braat, AK ;
Yan, N ;
Arn, E ;
Harrison, D ;
Macdonald, PM .
DEVELOPMENTAL CELL, 2004, 7 (01) :125-131
[7]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[8]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[9]   REVERSAL OF CREATINE-KINASE TRANSLATIONAL REPRESSION BY 3' UNTRANSLATED SEQUENCES [J].
CHNG, JLC ;
SHOEMAKER, DL ;
SCHIMMEL, P ;
HOLMES, EW .
SCIENCE, 1990, 248 (4958) :1003-1006
[10]   Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism [J].
Clark, IE ;
Wyckoff, D ;
Gavis, ER .
CURRENT BIOLOGY, 2000, 10 (20) :1311-1314