L-2 and L-2-L-infinity model reduction via linear matrix inequalities

被引:25
作者
Grigoriadis, KM
机构
[1] Department of Mechanical Engineering, University of Houston, Houston, TX
关键词
D O I
10.1080/002071797223497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Necessary and sufficient conditions are derived for the existance of a solution to the continuous-time and discrete-time suboptimal L-2 and L-2-L-infinity model reduction problems. These conditions are expressed in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint. In addition, explicit parametrizations of all reduced-order models that correspond to a feasible solution are presented in terms of contractive matrices.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 26 条
[1]   Model reduction of multidimensional and uncertain systems [J].
Beck, CL ;
Doyle, J ;
Glover, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (10) :1466-1477
[2]  
BERAN E, 1996, P 13 IFAC WORLD C SA
[3]  
ELGHAOUI I, 1993, P 1993 EUR CONTR C G
[4]   A cone complementarity linearization algorithm for static output-feedback and related problems [J].
ElGhaoui, L ;
Oustry, F ;
AitRami, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1171-1176
[5]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[6]  
GAHINET P, 1993, P 32 IEEE C DEC CONT
[7]  
GAHINET P, 1995, MATHWORKS PARTNER SE
[8]  
GRIGORIADIS K, 1996, AUTOMATICA, V32, P117
[9]   Optimal H infinity model reduction via linear matrix inequalities: Continuous- and discrete-time cases [J].
Grigoriadis, KM .
SYSTEMS & CONTROL LETTERS, 1995, 26 (05) :321-333
[10]   ALTERNATING CONVEX PROJECTION METHODS FOR COVARIANCE CONTROL DESIGN [J].
GRIGORIADIS, KM ;
SKELTON, RE .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 60 (06) :1083-1106