Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C

被引:122
作者
Agarwal, Vishal [2 ]
Dauenhauer, Paul J. [1 ]
Huber, George W. [1 ]
Auerbach, Scott M. [1 ]
机构
[1] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[2] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
CORRELATED MOLECULAR CALCULATIONS; RADIANT FLASH PYROLYSIS; REACTIVE FORCE-FIELD; GAUSSIAN-BASIS SETS; THERMAL-DEGRADATION; BIOMASS PYROLYSIS; ENERGY LANDSCAPES; KINETICS; MECHANISM; SIMULATION;
D O I
10.1021/ja305135u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We modeled nascent decomposition processes in cellulose pyrolysis at 327 and 600 degrees C using Car-Parrinello molecular dynamics (CPMD) simulations with rare events accelerated with the metadynamics method. We used a simulation cell comprised of two unit cells of cellulose I beta periodically repeated in three dimensions to mimic the solid cellulose. To obtain initial conditions at reasonable densities, we extracted coordinates from larger classical NPT simulations at the target temperatures. CPMD-metadynamics implemented with various sets of collective variables, such as coordination numbers of the glycosidic oxygen, yielded a variety of chemical reactions such as depolymerization, fragmentation, ring opening, and ring contraction. These reactions yielded precursors to levoglucosan (LGA)-the major product of pyrolysis-and also to minor products such as 5-hydroxy-methylfurfural (HMF) and formic acid. At 327 degrees C, we found that depolymerization via ring contraction of the glucopyranose ring to the glucofuranose ring occurs with the lowest free-energy barrier (20 kcal/mol). We suggest that this process is key for formation of liquid intermediate cellulose, observed experimentally above 260 degrees C. At 600 degrees C, we found that a precursor to LGA (pre-LGA) forms with a free-energy barrier of 36 kcal/mol via an intermediate/transition state stabilized by anchimeric assistance and hydrogen bonding. Conformational freedom provided by expansion of the cellulose matrix at 600 degrees C was found to be crucial for formation of pre-LGA. We performed several comparison calculations to gauge the accuracy of CPMD-metadynamics barriers with respect to basis set and level of theory. We found that free-energy barriers at 600 degrees C are in the order pre-LGA < pre-HMF < formic acid, explaining why LGA. is the kinetically favored product of fast cellulose pyrolysis.
引用
收藏
页码:14958 / 14972
页数:15
相关论文
共 96 条
[1]   Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures [J].
Agarwal, Vishal ;
Huber, George W. ;
Conner, W. Curtis, Jr. ;
Auerbach, Scott M. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (13)
[2]   KINETICS OF REACTIONS INVOLVED IN PYROLYSIS OF CELLULOSE .2. THE MODIFIED KILZER-BROIDO MODEL [J].
AGRAWAL, RK .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1988, 66 (03) :413-418
[3]   KINETICS OF REACTIONS INVOLVED IN PYROLYSIS OF CELLULOSE .1. THE 3-REACTION MODEL [J].
AGRAWAL, RK .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1988, 66 (03) :403-412
[4]   KINETICS OF CELLULOSE PYROLYSIS MODELED BY 3 CONSECUTIVE 1ST-ORDER REACTIONS [J].
ALVES, SS ;
FIGUEIREDO, JL .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1989, 17 (01) :37-46
[5]   New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ξ basis set 6-311+G(d,p) [J].
Andersson, MP ;
Uvdal, P .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (12) :2937-2941
[6]  
[Anonymous], 1990, CPMD CAR PARR MOL DY
[7]  
[Anonymous], 2006, Mem. Fac. Eng. Kyushu Univ.
[8]   Cellulose pyrolysis kinetics: Revisited [J].
Antal, MJ ;
Varhegyi, G ;
Jakab, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (04) :1267-1275
[9]   Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
ENERGY & FUELS, 2012, 26 (02) :1344-1352
[10]   Thermochemistry and Reaction Barriers for the Formation of Levoglucosenone from Cellobiose [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
CHEMCATCHEM, 2012, 4 (02) :200-205