Three-dimensional model of the cyclin-dependent kinase 1 (CDK1): Ab initio active site parameters for molecular dynamics studies of CDKs

被引:28
作者
Cavalli, A
Dezi, C
Folkers, G
Scapozza, L
Recanatini, M
机构
[1] Univ Bologna, Dept Pharmaceut Sci, I-40126 Bologna, Italy
[2] ETH Zurich, Inst Pharmaceut Sci, Dept Appl BioSci, Zurich, Switzerland
来源
PROTEINS-STRUCTURE FUNCTION AND GENETICS | 2001年 / 45卷 / 04期
关键词
anticancer drugs; homology modeling; metallo-protein; kinase activation; selectivity and flexibility;
D O I
10.1002/prot.10013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin-dependent kinase 1 (CDK1) is an interesting target for potential anticancer drugs, and its three-dimensional (3D) structure is presently unknown. The purpose of this work was to build a 3D model of CDK1, which could be used in drug design studies. The protein 3D structure was homology modeled, based on the known crystal structure of CDK2, and new nonbonded parameters for the Mg2+ coordination complex were developed by means of ab initio quantum chemical calculations. These parameters were both obtained and validated using the CDK2 structure as reference, and then they were used for the refinement of the CDK1 model. The resulting CDK1 structure was satisfactory and stable at room temperature, as shown by the molecular dynamics simulations carried out over a I-ns time interval on the entire protein. A number of representative kinases in the active and inactive form, including the inactive CDK1 modeled in this work, were compared. The results illustrate the conformational variability of the activation loop of the inactive form of the kinases and suggest a way for selectively targeting the single CDKs. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:478 / 485
页数:8
相关论文
共 39 条
[1]   Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles [J].
Arris, CE ;
Boyle, FT ;
Calvert, AH ;
Curtin, NJ ;
Endicott, JA ;
Garman, EF ;
Gibson, AE ;
Golding, BT ;
Grant, S ;
Griffin, RJ ;
Jewsbury, P ;
Johnson, LN ;
Lawrie, AM ;
Newell, DR ;
Noble, MEM ;
Sausville, EA ;
Schultz, R ;
Yu, W .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (15) :2797-2804
[2]   MOLECULAR-DYNAMICS CHARACTERIZATION OF THE ACTIVE CAVITY OF CARBOXYPEPTIDASE-A AND SOME OF ITS INHIBITOR ADDUCTS [J].
BANCI, L ;
SCHRODER, S ;
KOLLMAN, PA .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 13 (04) :288-305
[3]   The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2 [J].
Battistutta, R ;
Sarno, S ;
De Moliner, E ;
Papinutto, E ;
Zanotti, G ;
Pinna, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (38) :29618-29622
[4]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity [J].
Brown, NR ;
Noble, MEM ;
Lawrie, AM ;
Morris, MC ;
Tunnah, P ;
Divita, G ;
Johnson, LN ;
Endicott, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8746-8756
[7]  
CASE DA, AMBER 5
[8]   The development and therapeutic potential of protein kinase inhibitors [J].
Cohen, P .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (04) :459-465
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]  
Dixon RW, 1997, J COMPUT CHEM, V18, P1632, DOI 10.1002/(SICI)1096-987X(199710)18:13<1632::AID-JCC5>3.0.CO