PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure

被引:120
作者
Stopka, T [1 ]
Amanatullah, DF [1 ]
Papetti, M [1 ]
Skoultchi, AI [1 ]
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Cell Biol, Bronx, NY 10461 USA
关键词
erythroid differentiation; GATA-1; histone methylation; PU.1; transcriptional repression;
D O I
10.1038/sj.emboj.7600834
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional repression mechanisms are important during differentiation of multipotential hematopoietic progenitors, where they are thought to regulate lineage commitment and to extinguish alternative differentiation programs. PU.1 and GATA-1 are two critical hematopoietic transcription factors that physically interact and mutually antagonize each other's transcriptional activity and ability to promote myeloid and erythroid differentiation, respectively. We find that PU.1 inhibits the erythroid program by binding to GATA-1 on its target genes and organizing a complex of proteins that creates a repressive chromatin structure containing lysine-9 methylated H3 histones and heterochromatin protein 1. Although these features are thought to be stable aspects of repressed chromatin, we find that silencing of PU.1 expression leads to removal of the repression complex, loss of the repressive chromatin marks and reactivation of the erythroid program. This process involves incorporation of the replacement histone variant H3.3 into nucleosomes. Repression of one transcription factor bound to DNA by another transcription factor not on the DNA represents a new mechanism for downregulating an alternative gene expression program during lineage commitment of multipotential hematopoietic progenitors.
引用
收藏
页码:3712 / 3723
页数:12
相关论文
共 49 条
[1]   Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 [J].
Aagaard, L ;
Laible, G ;
Selenko, P ;
Schmid, M ;
Dorn, R ;
Schotta, G ;
Kuhfittig, S ;
Wolf, A ;
Lebersorger, A ;
Singh, PB ;
Reuter, G ;
Jenuwein, T .
EMBO JOURNAL, 1999, 18 (07) :1923-1938
[2]   Histone H3 variants specify modes of chromatin assembly [J].
Ahmad, K ;
Henikoff, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16477-16484
[3]   A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [J].
Akashi, K ;
Traver, D ;
Miyamoto, T ;
Weissman, IL .
NATURE, 2000, 404 (6774) :193-197
[4]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[5]   CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation [J].
Blobel, GA ;
Nakajima, T ;
Eckner, R ;
Montminy, M ;
Orkin, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :2061-2066
[6]  
Choe KS, 2003, CANCER RES, V63, P6363
[7]  
Courey AJ, 2001, GENE DEV, V15, P2786
[8]   Linking the Rb and polycomb pathways [J].
Dahiya, A ;
Wong, S ;
Gonzalo, S ;
Gavin, M ;
Dean, DC .
MOLECULAR CELL, 2001, 8 (03) :557-568
[9]   Histone H3-K9 methyltransferase ESET is essential for early development [J].
Dodge, JE ;
Kang, YK ;
Beppu, H ;
Lei, H ;
Li, E .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) :2478-2486
[10]   The HP1 protein family: getting a grip on chromatin [J].
Eissenberg, JC ;
Elgin, SCR .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (02) :204-210