Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex

被引:1174
作者
Han, Jinju
Lee, Yoontae
Yeom, Kyu-Hyeon
Nam, Jin-Wu
Heo, Inha
Rhee, Je-Keun
Sohn, Sun Young
Cho, Yunje
Zhang, Byoung-Tak
Kim, V. Narry [1 ]
机构
[1] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea
[2] Seoul Natl Univ, Res Ctr Funct Cellulom, Seoul, South Korea
[3] Seoul Natl Univ, Sch Comp Sci & Engn, Seoul, South Korea
[4] Pohang Univ Sci & Technol, Natl Creat Res Ctr Sruct Biol, Pohang, Kyungbook, South Korea
[5] Pohang Univ Sci & Technol, Dept Life Sci, Pohang, Kyungbook, South Korea
关键词
D O I
10.1016/j.cell.2006.03.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Drosha-DGCR8 complex initiates microRNA maturation by precise cleavage of the stem loops that are embedded in primary transcripts (pri-miRNAs). Here we propose a model for this process that is based upon evidence from both computational and biochemical analyses. A typical metazoan pri-miRNA consists of a stem of similar to 33 bp, with a terminal loop and flanking segments. The terminal loop is unessential, whereas the flanking ssRNA segments are critical for processing. The cleavage site is determined mainly by the distance (similar to 11 bp) from the stem-ssRNA junction. Purified DGCR8, but not Drosha, interacts with pri-miRNAs both directly and specifically, and the flanking ssRNA segments are vital for this binding to occur. Thus, DGCR8 may function as the molecular anchor that measures the distance from the dsRNA-ssRNA junction. Our current study thus facilitates the prediction of novel microRNAs and will assist in the rational design of small hairpin RNAs for RNA interference.
引用
收藏
页码:887 / 901
页数:15
相关论文
共 44 条
[1]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[2]   Human let-7 stem-loop precursors harbor features of RNase III cleavage products [J].
Basyuk, E ;
Suavet, F ;
Doglio, A ;
Bordonné, R ;
Bertrand, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (22) :6593-6597
[3]   Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage [J].
Blaszczyk, J ;
Tropea, JE ;
Bubunenko, M ;
Routzahn, KM ;
Waugh, DS ;
Court, DL ;
Ji, XH .
STRUCTURE, 2001, 9 (12) :1225-1236
[4]   Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J].
Bohnsack, MT ;
Czaplinski, K ;
Görlich, D .
RNA, 2004, 10 (02) :185-191
[5]   Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J].
Cai, XZ ;
Hagedorn, CH ;
Cullen, BR .
RNA, 2004, 10 (12) :1957-1966
[6]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[7]   Over 20% of human transcripts might form sense-antisense pairs [J].
Chen, JJ ;
Sun, M ;
Kent, WJ ;
Huang, XQ ;
Xie, HQ ;
Wang, WQ ;
Zhou, GL ;
Shi, RZ ;
Rowley, JD .
NUCLEIC ACIDS RESEARCH, 2004, 32 (16) :4812-4820
[8]   miRNAs, cancer, and stem cell division [J].
Croce, CM ;
Calin, GA .
CELL, 2005, 122 (01) :6-7
[9]   Processing of primary microRNAs by the Microprocessor complex [J].
Denli, AM ;
Tops, BBJ ;
Plasterk, RHA ;
Ketting, RF ;
Hannon, GJ .
NATURE, 2004, 432 (7014) :231-235
[10]   Probing tumor phenotypes using stable and regulated synthetic microRNA precursors [J].
Dickins, RA ;
Hemann, MT ;
Zilfou, JT ;
Simpson, DR ;
Ibarra, I ;
Hannon, GJ ;
Lowe, SW .
NATURE GENETICS, 2005, 37 (11) :1289-1295