Magnetization vector manipulation by electric fields

被引:581
作者
Chiba, D. [1 ,2 ]
Sawicki, M. [1 ,3 ]
Nishitani, Y. [1 ]
Nakatani, Y. [4 ]
Matsukura, F. [1 ,2 ]
Ohno, H. [1 ,2 ]
机构
[1] Tohoku Univ, Aoba Ku, Lab Nanoelect & Spintron, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, Chiyoda Ku, Semicond Spintron Project, Tokyo 1020075, Japan
[3] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[4] Univ Electrocommun, Tokyo 1828585, Japan
关键词
D O I
10.1038/nature07318
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional semiconductor devices use electric fields to control conductivity, a scalar quantity, for information processing. In magnetic materials, the direction of magnetization, a vector quantity, is of fundamental importance. In magnetic data storage, magnetization is manipulated with a current-generated magnetic field (Oersted-Ampere field), and spin current(1,2) is being studied for use in non- volatile magnetic memories(3,4). To make control of magnetization fully compatible with semiconductor devices, it is highly desirable to control magnetization using electric fields. Conventionally, this is achieved by means of magnetostriction produced by mechanically generated strain through the use of piezoelectricity(5-8). Multiferroics(9,10) have been widely studied in an alternative approach where ferroelectricity is combined with ferromagnetism. Magnetic- field control of electric polarization has been reported in these multiferroics using the magnetoelectric effect, but the inverse effect - direct electrical control of magnetization - has not so far been observed(11). Here we show that the manipulation of magnetization can be achieved solely by electric fields in a ferromagnetic semiconductor, (Ga,Mn)As. The magnetic anisotropy, which determines the magnetization direction, depends on the charge carrier (hole) concentration in (Ga,Mn) As. By applying an electric field using a metal - insulator - semiconductor structure(12-14), the hole concentration and, thereby, the magnetic anisotropy can be controlled, allowing manipulation of the magnetization direction.
引用
收藏
页码:515 / 518
页数:4
相关论文
共 30 条
[1]   Theory of magnetic anisotropy in III1-xMnxV ferromagnets -: art. no. 054418 [J].
Abolfath, M ;
Jungwirth, T ;
Brum, J ;
MacDonald, AH .
PHYSICAL REVIEW B, 2001, 63 (05)
[2]  
[Anonymous], 2007, IEEE INT SOLID STATE
[3]   Emission of spin waves by a magnetic multilayer traversed by a current [J].
Berger, L .
PHYSICAL REVIEW B, 1996, 54 (13) :9353-9358
[4]   Electric-field control of ferromagnetism in (Ga,Mn)As [J].
Chiba, D. ;
Matsukura, F. ;
Ohno, H. .
APPLIED PHYSICS LETTERS, 2006, 89 (16)
[5]   Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor [J].
Chiba, D ;
Yamanouchi, M ;
Matsukura, F ;
Ohno, H .
SCIENCE, 2003, 301 (5635) :943-945
[6]   Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J].
Chu, Ying-Hao ;
Martin, Lane W. ;
Holcomb, Mikel B. ;
Gajek, Martin ;
Han, Shu-Jen ;
He, Qing ;
Balke, Nina ;
Yang, Chan-Ho ;
Lee, Donkoun ;
Hu, Wei ;
Zhan, Qian ;
Yang, Pei-Ling ;
Fraile-Rodriguez, Arantxa ;
Scholl, Andreas ;
Wang, Shan X. ;
Ramesh, R. .
NATURE MATERIALS, 2008, 7 (06) :478-482
[7]   Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F ;
Cibert, J ;
Ferrand, D .
SCIENCE, 2000, 287 (5455) :1019-1022
[8]   Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F .
PHYSICAL REVIEW B, 2001, 63 (19)
[9]   Multiferroic and magnetoelectric materials [J].
Eerenstein, W. ;
Mathur, N. D. ;
Scott, J. F. .
NATURE, 2006, 442 (7104) :759-765
[10]   Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor [J].
Goennenwein, S. T. B. ;
Althammer, M. ;
Bihler, C. ;
Brandlmaier, A. ;
Gepraegs, S. ;
Opel, M. ;
Schoch, W. ;
Limmer, W. ;
Gross, R. ;
Brandt, M. S. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2008, 2 (03) :96-98