An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma

被引:259
作者
Chesney, J
Metz, C
Bacher, M
Peng, T
Meinhardt, A
Bucala, R
机构
[1] Picower Inst Med Res, Med Biochem Lab, Manhasset, NY 11030 USA
[2] Univ Marburg, Dept Anat & Cell Biol, D-3550 Marburg, Germany
关键词
D O I
10.1007/BF03402061
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Macrophage migration inhibitory factor (MIF) has been shown to counterregulate glucocorticoid action and to play an essential role in the activation of macrophages and T cells in vivo. MIF also may function as an autocrine growth factor in certain cell systems. We have explored the role of MTF in the growth of the 38Cl3 B cell lymphoma in C3H/HeN mice, a well-characterized syngeneic model for the study of solid tumor biology. Materials and Methods: Tumor-bearing mice were treated with a neutralizing anti-MIF monoclonal antibody and the tumor response assessed grossly and histologically. Tumor capillaries were enumerated by immunohistochemistry and analyzed for MIF expression. The effect of MIF on endothelial cell proliferation was studied in vitro, utilizing both specific antibody and antisense oligonucleotide constructs. The role of MIF in angiogenesis also was examined in a standard Matrigel model of new blood vessel formation in vivo. Results: The administration of anti-MIF monoclonal antibodies to mice was found to reduce significantly the growth and the vascularization of the 38C13 B cell lymphoma. By immunohistochemistry, MIF was expressed predominantly within the tumor-associated neovasculature. Cultured microvascular endothelial cells, bur not 38C13 B cells, produced MIF protein and required its activity for proliferation in vitro. Anti-MIF monoclonal antibody also was found to markedly inhibit the neovascularization response elicited by Matrigel implantation. Conclusion: These data significantly expand the role of MIF in host responses, and suggest a new target for the development of anti-neoplastic agents that inhibit tumor neovascularization.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 41 条
[1]   Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice [J].
Arenberg, DA ;
Kunkel, SL ;
Polverini, PJ ;
Glass, M ;
Burdick, MD ;
Strieter, RM .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (12) :2792-2802
[2]   An essential regulatory role for macrophage migration inhibitory factor in T-cell activation [J].
Bacher, M ;
Metz, CN ;
Calandra, T ;
Mayer, K ;
Chesney, J ;
Lohoff, M ;
Gemsa, D ;
Donnelly, T ;
Bucala, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7849-7854
[3]  
Bacher M, 1997, AM J PATHOL, V150, P235
[4]   THE CELL BIOLOGY OF TRANSFORMING GROWTH-FACTOR-BETA [J].
BARNARD, JA ;
LYONS, RM ;
MOSES, HL .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1032 (01) :79-87
[5]  
BASHAM TY, 1988, CANCER RES, V48, P4196
[6]   CHARACTERIZATION OF A CARCINOGEN-INDUCED MURINE B-LYMPHOCYTE CELL LINE OF C3H-EB ORIGIN [J].
BERGMAN, Y ;
HAIMOVICH, J .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1977, 7 (07) :413-417
[7]   MIF IS A PITUITARY-DERIVED CYTOKINE THAT POTENTIATES LETHAL ENDOTOXEMIA [J].
BERNHAGEN, J ;
CALANDRA, T ;
MITCHELL, RA ;
MARTIN, SB ;
TRACEY, KJ ;
VOELTER, W ;
MANOGUE, KR ;
CERAMI, A ;
BUCALA, R .
NATURE, 1993, 365 (6448) :756-759
[8]   PURIFICATION, BIOACTIVITY, AND SECONDARY STRUCTURE-ANALYSIS OF MOUSE AND HUMAN MACROPHAGE-MIGRATION INHIBITORY FACTOR (MIF) [J].
BERNHAGEN, J ;
MITCHELL, RA ;
CALANDRA, T ;
VOELTER, W ;
CERAMI, A ;
BUCALA, R .
BIOCHEMISTRY, 1994, 33 (47) :14144-14155
[9]   An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction [J].
Bernhagen, J ;
Bacher, M ;
Calandra, T ;
Metz, CN ;
Doty, SB ;
Donnelly, T ;
Bucala, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (01) :277-282
[10]   MECHANISM OF A REACTION IN VITRO ASSOCIATED WITH DELAYED-TYPE HYPERSENSITIVITY [J].
BLOOM, BR ;
BENNETT, B .
SCIENCE, 1966, 153 (3731) :80-&