Mitochondrial Protein Acylation and Intermediary Metabolism: Regulation by Sirtuins and Implications for Metabolic Disease

被引:177
作者
Newman, John C. [1 ,2 ]
He, Wenjuan [1 ]
Verdin, Eric [1 ,3 ]
机构
[1] Gladstone Inst Virol & Immunol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Div Geriatr, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
FATTY-ACID OXIDATION; DIET-INDUCED OBESITY; INDUCED INSULIN-RESISTANCE; COENZYME-A DECARBOXYLASE; ACETYL-COA CARBOXYLASE-2; LIFE-SPAN EXTENSION; CHAIN AMINO-ACIDS; CALORIE RESTRICTION; LYSINE ACETYLATION; SKELETAL-MUSCLE;
D O I
10.1074/jbc.R112.404863
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sirtuins are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Three sirtuins, SIRT3-5, localize to mitochondria. Expression of SIRT3 is selectively activated during fasting and calorie restriction. SIRT3 regulates the acetylation level and enzymatic activity of key metabolic enzymes, such as acetyl-CoA synthetase, long-chain acyl-CoA dehydrogenase, and 3-hydroxy-3-methylglutaryl-CoA synthase 2, and enhances fat metabolism during fasting. SIRT5 exhibits demalonylase/desuccinylase activity, and lysine succinylation and malonylation are abundant mitochondrial protein modifications. No convincing enzymatic activity has been reported for SIRT4. Here, we review the emerging role of mitochondrial sirtuins as metabolic sensors that respond to changes in the energy status of the cell and modulate the activities of key metabolic enzymes via protein deacylation.
引用
收藏
页码:42436 / 42443
页数:8
相关论文
共 93 条
[1]   Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets [J].
Abu-Elheiga, L ;
Oh, WK ;
Kordari, P ;
Wakil, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10207-10212
[2]   Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2 [J].
Abu-Elheiga, L ;
Matzuk, MM ;
Abo-Hashema, KAH ;
Wakil, SJ .
SCIENCE, 2001, 291 (5513) :2613-2616
[3]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[4]   Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase [J].
Ahuja, Nidhi ;
Schwer, Bjoern ;
Carobbio, Stefania ;
Waltregny, David ;
North, Brian J. ;
Castronovo, Vincenzo ;
Maechler, Pierre ;
Verdin, Eric .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33583-33592
[5]   Sirtuin-3 (SIRT3), a Novel Potential Therapeutic Target for Oral Cancer [J].
Alhazzazi, Turki Y. ;
Kamarajan, Pachiyappan ;
Joo, Nam ;
Huang, Jing-Yi ;
Verdin, Eric ;
D'Silva, Nisha J. ;
Kapila, Yvonne L. .
CANCER, 2011, 117 (08) :1670-1678
[6]   Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Sinclair, DA .
NATURE, 2003, 423 (6936) :181-185
[7]   SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity [J].
Bao, Jianjun ;
Scott, Iain ;
Lu, Zhongping ;
Pang, Liyan ;
Dimond, Christopher C. ;
Gius, David ;
Sack, Michael N. .
FREE RADICAL BIOLOGY AND MEDICINE, 2010, 49 (07) :1230-1237
[8]   The Warburg effect in 2012 [J].
Bayley, Jean-Pierre ;
Devilee, Peter .
CURRENT OPINION IN ONCOLOGY, 2012, 24 (01) :62-67
[9]  
Berg J.M., 2008, BIOCH LOOSE LEAF
[10]   Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J].
Bitterman, KJ ;
Anderson, RM ;
Cohen, HY ;
Latorre-Esteves, M ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45099-45107