Achievable rates for the Gaussian quantum channel

被引:63
作者
Harrington, J [1 ]
Preskill, J [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevA.64.062301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral lattices with suitable properties, we infer a locker bound on the quantum capacity of the Gaussian quantum channel that matches the one-shot coherent information optimized over Gaussian input states.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Information transmission through a noisy quantum channel [J].
Barnum, H ;
Nielsen, MA ;
Schumacher, B .
PHYSICAL REVIEW A, 1998, 57 (06) :4153-4175
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Capacities of quantum erasure channels [J].
Bennett, CH ;
DiVincenzo, DP ;
Smolin, JA .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3217-3220
[4]   Error correction for continuous quantum variables [J].
Braunstein, SL .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4084-4087
[5]   ON THE PERIOD MATRIX OF A RIEMANN SURFACE OF LARGE GENUS (WITH AN APPENDIX BY CONWAY,J.H. AND SLOANE,N.J.A.) [J].
BUSER, P ;
SARNAK, P .
INVENTIONES MATHEMATICAE, 1994, 117 (01) :27-56
[6]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[7]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[8]  
Cassels J. W. S., 1971, INTRO GEOMETRY NUMBE
[9]  
Conway J.H., 1999, GRUNDLEHREN MATH WIS, V290
[10]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X