A study of primary nucleation of calcium oxalate monohydrate: I-Effect of supersaturation

被引:31
作者
El-Shall, H [1 ]
Jeon, JH
Abdel-Aal, EA
Khan, S
Gower, L
Rabinovich, Y
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Pathol, Gainesville, FL USA
[3] Univ Florida, Engn Res Ctr Particle Sci & Technol, Gainesville, FL USA
[4] Cent Met Res & Dev Inst, Cairo, Egypt
关键词
primary nucleation; crystallization; calcium oxalate monohydrate (com); induction time; kidney stones;
D O I
10.1002/crat.200310173
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
There are various organic and inorganic constituents in kidney stones. Among them, calcium oxalate monohydrate (COM) is the primary inorganic constituent of kidney stones. However, the mechanisms of formation of kidney stones are not well understood. In this regard, a basic study is carried out for better understanding of nucleation, crystal growth and/or aggregation of formed COM crystals. The primary nucleation of calcium oxalate monohydrate is studied at the laboratory scale using turbidity measurements. Calcium chloride and potassium oxalate solutions are mixed and then added to a Turbidimeter tube for continuous recording of turbidity. Induction time (time to induce formation of detectable crystals) is estimated from time-turbidity graphs. The effect of some urinary species, such as oxalate and calcium, on nucleation and crystallization characteristics of COM is determined by particle size distribution analysis, measuring weight of crystals and calculation of relative supersaturation. The classical nucleation theory is applied at high supersaturation ratios (SR) ranging from 1.6 to 2.2. The results indicate that nucleation rate increases with increasing supersaturation ratio from 0.81 x 10(28) nuclei/cm(3).sec at 1.6 SR, to 18.02 x 10(28) nuclei/cm(3).sec at 2.2 SR. On the other hand, free energy change and radius of critical nucleus are decreased as supersaturation ratio is increased. The nucleation rates are higher than those reported in literature. Such discrepancy is discussed on the bases of differences in experimental techniques.
引用
收藏
页码:214 / 221
页数:8
相关论文
共 21 条
[1]  
Ackermann D, 1989, Urol Res, V17, P147
[2]   NUCLEATION OF CALCIUM-OXALATE MONOHYDRATE - USE OF TURBIDITY MEASUREMENTS AND COMPUTER-ASSISTED SIMULATIONS IN CHARACTERIZING EARLY EVENTS IN CRYSTAL-FORMATION [J].
BROWN, CM ;
ACKERMANN, DK ;
PURICH, DL ;
FINLAYSON, B .
JOURNAL OF CRYSTAL GROWTH, 1991, 108 (3-4) :455-464
[3]  
BUDAVAR S, 1996, MERCK INDEX ENCY CHE
[4]  
Finlayson B, 1974, Urol Clin North Am, V1, P181
[5]   EFFECT OF POLY(ACRYLIC ACID-CO-N-VINYLPYRROLIDONE) ON CALCIUM-OXALATE CRYSTALLIZATION [J].
GEORGIEV, GS ;
DJAROVA, MD ;
PETKOVA, JI ;
GEORGIEV, GI ;
KOSEVA, NS .
POLYMER JOURNAL, 1995, 27 (04) :441-444
[6]   Crystallization and microhardness of calcium oxalate monohydrate [J].
Girija, EK ;
Latha, SC ;
Kalkura, SN ;
Subramanian, C ;
Ramasamy, P .
MATERIALS CHEMISTRY AND PHYSICS, 1998, 52 (03) :253-257
[7]   THE INHIBITION OF GYPSUM AND BARITE NUCLEATION IN NACL BRINES AT TEMPERATURES FROM 25-DEGREES-C TO 90-DEGREES-C [J].
HE, SL ;
ODDO, JE ;
TOMSON, MB .
APPLIED GEOCHEMISTRY, 1994, 9 (05) :561-567
[8]  
KHAN SR, 1995, SCANNING MICROSCOPY, V9, P89
[9]   HETEROGENEOUS NUCLEATION OF CALCIUM-OXALATE CRYSTALS IN THE PRESENCE OF MEMBRANE-VESICLES [J].
KHAN, SR ;
WHALEN, PO ;
GLENTON, PA .
JOURNAL OF CRYSTAL GROWTH, 1993, 134 (3-4) :211-218
[10]   PHYSICOCHEMICAL CONSIDERATIONS IN THE DEVELOPMENT AND PREVENTION OF CALCIUM-OXALATE UROLITHIASIS [J].
KOK, DJ ;
PAPAPOULOS, SE .
BONE AND MINERAL, 1993, 20 (01) :1-15