Involvement of transmembrane domain interactions in signal transduction by α/β integrins

被引:88
作者
Schneider, D
Engelman, DM
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Univ Freiburg, Dept Biochem & Mol Biol, D-79104 Freiburg, Germany
关键词
D O I
10.1074/jbc.M312749200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.
引用
收藏
页码:9840 / 9846
页数:7
相关论文
共 45 条
[31]   TOXCAT: A measure of transmembrane helix association in a biological membrane [J].
Russ, WP ;
Engelman, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :863-868
[32]   The GxxxG motif: A framework for transmembrane helix-helix association [J].
Russ, WP ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (03) :911-919
[33]   GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane [J].
Schneider, D ;
Engelman, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3105-3111
[34]   Statistical analysis of amino acid patterns in transmembrane helices:: The GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions [J].
Senes, A ;
Gerstein, M ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (03) :921-936
[35]   Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling [J].
Takagi, J ;
Petre, BM ;
Walz, T ;
Springer, TA .
CELL, 2002, 110 (05) :599-611
[36]   Definition of EGF-like, closely interacting modules that bear activation epitopes in integrin β subunits [J].
Takagi, J ;
Beglova, N ;
Yalamanchili, P ;
Blacklow, SC ;
Springer, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11175-11180
[37]   The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J].
Thompson, JD ;
Gibson, TJ ;
Plewniak, F ;
Jeanmougin, F ;
Higgins, DG .
NUCLEIC ACIDS RESEARCH, 1997, 25 (24) :4876-4882
[38]   An unraveling tale of how integrins are activated from within [J].
Travis, MA ;
Humphries, JD ;
Humphries, MJ .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2003, 24 (04) :192-197
[39]   NMR analysis of structure and dynamics of the cytosolic tails of integrin αIIbβ3 in aqueous solution [J].
Ulmer, TS ;
Yaspan, B ;
Ginsberg, MH ;
Campbell, ID .
BIOCHEMISTRY, 2001, 40 (25) :7498-7508
[40]   Divalent cations differentially regulate integrin αIIb cytoplasmic tail binding to β3 and to calcium- and integrin-binding protein [J].
Vallar, L ;
Melchior, C ;
Plançon, S ;
Drobecq, H ;
Lippens, G ;
Regnault, V ;
Kieffer, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (24) :17257-17266