Characterizing folding, structure, molecular interactions and ligand gated activation of single sodium/proton antiporters

被引:1
作者
Kedrov, A [1 ]
Müller, DJ [1 ]
机构
[1] Tech Univ Dresden, Ctr Biotechnol, D-01307 Dresden, Germany
关键词
ion exchange; protein folding; single-molecule approach; stable segments; two-stage folding model;
D O I
10.1007/s00210-005-0027-0
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Using the example of sodium/proton antiporter from Escherichia coli NhaA, we review the capabilities of single-molecule atomic force microscopy and force spectroscopy to observe structural and functional insights of a membrane protein, which are not attainable by other traditional methods. While atomic force microscopy provides high-resolution topographs of single membrane proteins, their oligomeric state and assembly, single-molecule force spectroscopy experiments detect molecular interactions of the protein. The sensitivity of this method makes it possible to detect and locate interactions that stabilize secondary structures such as transmembrane alpha-helices, polypeptide loops and segments within them. Controlled refolding experiments using single-molecule force spectroscopy observed individual secondary structure segments folding into the functional protein. Various folding pathways of NhaA were detected, each one exhibiting a certain probability to be taken. Time-lapse refolding experiments enabled determining the folding kinetics and hierarchy of individual secondary structural elements. Recent examples detected and located the ligand binding of an antiporter. Similarly, inhibitor binding and location can be detected which in future may guide towards comparative studies of agonist and antagonist altering the functional state of a membrane protein. We review current and future potentials of these approaches to characterize the action of pharmacological molecules on the antiporter function.
引用
收藏
页码:400 / 412
页数:13
相关论文
共 100 条
[1]   Games played by rogue proteins in prion disorders and Alzheimer's disease [J].
Aguzzi, A ;
Haass, C .
SCIENCE, 2003, 302 (5646) :814-818
[2]   SOLVENT DENATURATION AND STABILIZATION OF GLOBULAR-PROTEINS [J].
ALONSO, DOV ;
DILL, KA .
BIOCHEMISTRY, 1991, 30 (24) :5974-5985
[3]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[4]   SEC DEPENDENT AND SEC INDEPENDENT ASSEMBLY OF ESCHERICHIA-COLI INNER MEMBRANE-PROTEINS - THE TOPOLOGICAL RULES DEPEND ON CHAIN-LENGTH [J].
ANDERSSON, H ;
VONHEIJNE, G .
EMBO JOURNAL, 1993, 12 (02) :683-691
[5]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[6]   The molecular basis for the chemical denaturation of proteins by urea [J].
Bennion, BJ ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5142-5147
[7]   Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation [J].
Best, RB ;
Li, B ;
Steward, A ;
Daggett, V ;
Clarke, J .
BIOPHYSICAL JOURNAL, 2001, 81 (04) :2344-2356
[8]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[9]   INTRACELLULAR-PH REGULATION IN FERRET VENTRICULAR MUSCLE - THE ROLE OF NA-H EXCHANGE AND THE INFLUENCE OF METABOLIC SUBSTRATES [J].
BLATTER, LA ;
MCGUIGAN, JAS .
CIRCULATION RESEARCH, 1991, 68 (01) :150-161
[10]   Unravelling the folding of bacteriorhodopsin [J].
Booth, PJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1460 (01) :4-14