Investigation of penetratin peptides Part 1.: The environment dependent conformational properties of penetratin and two of its derivatives

被引:46
作者
Czajlik, A
Meskó, E
Penke, B
Perczel, A
机构
[1] Eotvos Lorand Univ, Dept Organ Chem, H-1518 Budapest 112, Hungary
[2] Univ Szeged, Dept Organ Chem, Szeged, Hungary
[3] Univ Szeged, Dept Med Chem, Szeged, Hungary
关键词
NMR; CD; penetratin; TFEd(2)/water mixtures; helical structure; conformational ensemble;
D O I
10.1002/psc.380
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The homeodomain, the DNA-binding domain of Antennapedia homeoprotein, is composed of three alpha-helices and one U-turn between helices II and III. Its third helix from the N-terminal (helix III) can translocate through the cell membrane into the nucleus and can be used as an intracellular vehicle for the delivery of oligopeptides and oligonucleotides, To the best of our knowledge, this helix III, called penetratin, which consists of 16 amino acids, is internalized by cells in a specific, non-receptor-mediated manner. For a better understanding of the mechanism of the transfer, the structure of penetratin was examined in both extracellular matrix-mimetic and membrane-mimetic environments; (1)H-NMR and CD spectroscopic measurements were performed in mixtures of TFE/water with different ratios. The molecular conformations of two analogue peptides [(6,14-Phe)-penetratin and a 12 amino acid penetratin derivative (peptide 3)] were also studied. An atomic level comprehensive analysis of penetratin and its two analogues was performed. In a membrane-mimetic solvent system (TFEd(2)/water = 9 : 1), on the basis of 553 distance restraints, the 4-12 region of penetratin exhibits a bent, irregular helical structure on NMR examination. Interactions between hydrophobic amino acid residues in conjunction with H-bonds stabilize the secondary structure of the molecule. Thus, both derivatives adopt a helix-like conformation. However, while (6,14-Phe)-penetratin displays both alpha-helical and 3(10)-helical features, the structure of peptide 3 is predominantly a 3(10)-helix. Of the three peptides, surprisingly (6,14-Phe)-penetratin has the largest helical content. An increase in the polarity of the molecular environment gradually disintegrates these helix-like secondary structures. In a highly aqueous molecular system (TFEd2/water = I : 9). the fast exchange of multiple. conformers leads to too few distance restraints being extracted, therefore the NMR structures can no longer be determined. The NMR data show that only short-range order can be traced in these peptides. Under these conditions, the molecules adopt nascent helix-like structures. On the other hand, CD spectra could be recorded at any TFE/water ratio and the conformational interconversion could therefore be monitored as a function of the polarity of the molecular environment. The CD data were analysed comprehensively by the quantitative deconvolution method (CCA+). All three penetratin peptides display helical conformational features in a low dielectric medium, With significant differences as a function of their amino acid composition. However, these conformational features are gradually lost during the shift from an apolar to a polar molecular environment. Copyright (C) 2002 European Peptide Society and John Wiley Sons, Ltd.
引用
收藏
页码:151 / 171
页数:21
相关论文
共 29 条
[11]   MOLMOL: A program for display and analysis of macromolecular structures [J].
Koradi, R ;
Billeter, M ;
Wuthrich, K .
JOURNAL OF MOLECULAR GRAPHICS, 1996, 14 (01) :51-&
[12]   NEUROTROPHIC ACTIVITY OF THE ANTENNAPEDIA HOMEODOMAIN DEPENDS ON ITS SPECIFIC DNA-BINDING PROPERTIES [J].
LEROUX, I ;
JOLIOT, AH ;
BLOCHGALLEGO, E ;
PROCHIANTZ, A ;
VOLOVITCH, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :9120-9124
[13]   DETERMINATION OF 3-DIMENSIONAL STRUCTURES OF PROTEINS FROM INTERPROTON DISTANCE DATA BY DYNAMICAL SIMULATED ANNEALING FROM A RANDOM ARRAY OF ATOMS - CIRCUMVENTING PROBLEMS ASSOCIATED WITH FOLDING [J].
NILGES, M ;
CLORE, GM ;
GRONENBORN, AM .
FEBS LETTERS, 1988, 239 (01) :129-136
[14]  
NILGES M, 1991, COMPUTATIONAL ASPECT
[15]   ANALYSIS OF THE CIRCULAR-DICHROISM SPECTRUM OF PROTEINS USING THE CONVEX CONSTRAINT ALGORITHM - A PRACTICAL GUIDE [J].
PERCZEL, A ;
PARK, K ;
FASMAN, GD .
ANALYTICAL BIOCHEMISTRY, 1992, 203 (01) :83-93
[16]   CONVEX CONSTRAINT ANALYSIS - A NATURAL DECONVOLUTION OF CIRCULAR-DICHROISM CURVES OF PROTEINS [J].
PERCZEL, A ;
HOLLOSI, M ;
TUSNADY, G ;
FASMAN, GD .
PROTEIN ENGINEERING, 1991, 4 (06) :669-679
[17]  
Perczel A, 1996, CIRCULAR DICHROISM C, P285, DOI DOI 10.1007/978-1-4757-2508-7_9
[18]   NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY OF A DNA COMPLEX WITH THE UNIFORMLY C-13-LABELED ANTENNAPEDIA HOMEODOMAIN AND STRUCTURE DETERMINATION OF THE DNA-BOUND HOMEODOMAIN [J].
QIAN, YQ ;
OTTING, G ;
BILLETER, M ;
MULLER, M ;
GEHRING, W ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (04) :1070-1083
[19]   THE STRUCTURE OF THE ANTENNAPEDIA HOMEODOMAIN DETERMINED BY NMR-SPECTROSCOPY IN SOLUTION - COMPARISON WITH PROKARYOTIC REPRESSORS [J].
QIAN, YQ ;
BILLETER, M ;
OTTING, G ;
MULLER, M ;
GEHRING, WJ ;
WUTHRICH, K .
CELL, 1989, 59 (03) :573-580
[20]   NMR STRUCTURE DETERMINATION REVEALS THAT THE HOMEODOMAIN IS CONNECTED THROUGH A FLEXIBLE LINKER TO THE MAIN BODY IN THE DROSOPHILA ANTENNAPEDIA PROTEIN [J].
QIAN, YQ ;
OTTING, G ;
FURUKUBOTOKUNAGA, K ;
AFFOLTER, M ;
GEHRING, WJ ;
WUTHRICH, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (22) :10738-10742