A conjugate gradient method for the unconstrained minimization of strictly convex quadratic splines

被引:9
作者
Li, W
机构
[1] Dept. of Mathematics and Statistics, Old Dominion University, Norfolk
基金
美国国家航空航天局;
关键词
unconstrained minimization of a convex quadratic spline; quadratic programs with simple bound constraints; conjugate gradient methods; piecewise linear equations; nondegenerate solutions; linear convergence; finite convergence; global error estimates;
D O I
10.1007/BF02592329
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we show that an analogue of the classical conjugate gradient method converges linearly when applied to solving the problem of unconstrained minimization of a strictly convex quadratic spline. Since a strictly convex quadratic program with simple bound constraints can be reformulated as unconstrained minimization of a strictly convex quadratic spline, the conjugate gradient method is used to solve the unconstrained reformulation and find the solution of the original quadratic program. In particular, if the solution of the original quadratic program is nondegenerate, then the conjugate gradient method finds the solution in a finite number of iterations.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 33 条
[1]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[2]  
Beale E.M.L., 1972, FA Lootsma ed, P39
[3]   AN O(N) ALGORITHM FOR QUADRATIC KNAPSACK-PROBLEMS [J].
BRUCKER, P .
OPERATIONS RESEARCH LETTERS, 1984, 3 (03) :163-166
[4]   QUASI-NEWTON UPDATES WITH BOUNDS [J].
CALAMAI, PH ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1434-1441
[5]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[6]   SOLUTION OF A QUADRATIC PROGRAMMING PROBLEM USING FAST METHODS TO SOLVE SYSTEMS OF LINEAR EQUATIONS [J].
DIAMOND, MA .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1974, 5 (02) :131-136
[7]  
FLETCHER R, 1964, COMPUT J, V7, P143
[8]  
Frank M., 1956, NAV RES LOG, V3, P95, DOI [10.1002/nav.3800030109, 10.1002/nav.v3:1/2]
[9]   ON THE MAXIMIZATION OF A CONCAVE QUADRATIC FUNCTION WITH BOX CONSTRAINTS [J].
FRIEDLANDER, A ;
MARTINEZ, JM .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (01) :177-192
[10]  
GAL T, 1993, ANN OPERATIONS RES, V46