A Role for Oxidized DNA Precursors in Huntington's Disease-Like Striatal Neurodegeneration

被引:50
作者
De Luca, Gabriele [1 ]
Russo, Maria Teresa [1 ]
Degan, Paolo [2 ]
Tiveron, Cecilia [3 ]
Zijno, Andrea [1 ]
Meccia, Ettore [1 ]
Ventura, Ilenia [1 ]
Mattei, Elisabetta [4 ]
Nakabeppu, Yusaku [5 ]
Crescenzi, Marco [1 ]
Pepponi, Rita [6 ]
Pezzola, Antonella [6 ]
Popoli, Patrizia [6 ]
Bignami, Margherita [1 ]
机构
[1] Ist Super Sanita, Dept Environm & Primary Prevent, Expt Carcinogenesis Div, I-00161 Rome, Italy
[2] Ist Nazl Ric Canc, IST CBA, Dept Translat Oncol, I-16132 Genoa, Italy
[3] European Brain Res Inst, Rome, Italy
[4] CNR, Inst Neurobiol & Mol Med, Rome, Italy
[5] Kyushu Univ, Div Neurofunct Genom, Med Inst Bioregulat, Fukuoka 812, Japan
[6] Ist Super Sanita, Dept Drug Res & Evaluat, Cent Nervous Syst Pharmacol Div, I-00161 Rome, Italy
来源
PLOS GENETICS | 2008年 / 4卷 / 11期
关键词
D O I
10.1371/journal.pgen.1000266
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Several human neurodegenerative disorders are characterized by the accumulation of 8-oxo-7,8-dihydroguanine (8-oxodG) in the DNA of affected neurons. This can occur either through direct oxidation of DNA guanine or via incorporation of the oxidized nucleotide during replication. Hydrolases that degrade oxidized purine nucleoside triphosphates normally minimize this incorporation. hMTH1 is the major human hydrolase. It degrades both 8-oxodGTP and 8-oxoGTP to the corresponding monophosphates. To investigate whether the incorporation of oxidized nucleic acid precursors contributes to neurodegeneration, we constructed a transgenic mouse in which the human hMTH1 8-oxodGTPase is expressed. hMTH1 expression protected embryonic fibroblasts and mouse tissues against the effects of oxidants. Wild-type mice exposed to 3-nitropropionic acid develop neuropathological and behavioural symptoms that resemble those of Huntington's disease. hMTH1 transgene expression conferred a dramatic protection against these Huntington's disease-like symptoms, including weight loss, dystonia and gait abnormalities, striatal degeneration, and death. In a complementary approach, an in vitro genetic model for Huntington's disease was also used. hMTH1 expression protected progenitor striatal cells containing an expanded CAG repeat of the huntingtin gene from toxicity associated with expression of the mutant huntingtin. The findings implicate oxidized nucleic acid precursors in the neuropathological features of Huntington's disease and identify the utilization of oxidized nucleoside triphosphates by striatal cells as a significant contributor to the pathogenesis of this disorder.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson's disease [J].
Arai, Takeo ;
Fukae, Jiro ;
Hatano, Taku ;
Kubo, Shin-ichiro ;
Ohtsubo, Toshio ;
Nakabeppu, Yusaku ;
Mori, Hideo ;
Mizuno, Yoshikuni ;
Hattori, Nobutaka .
ACTA NEUROPATHOLOGICA, 2006, 112 (02) :139-145
[2]   Repair and genetic consequences of endogenous DNA base damage in mammalian cells [J].
Barnes, DE ;
Lindahl, T .
ANNUAL REVIEW OF GENETICS, 2004, 38 :445-476
[3]   Striatal and cortical neurochemical changes induced by chronic metabolic compromise in the 3-nitropropionic model of Huntington's disease [J].
Blum, D ;
Galas, MC ;
Gall, D ;
Cuvelier, L ;
Schiffmann, SN .
NEUROBIOLOGY OF DISEASE, 2002, 10 (03) :410-426
[4]   Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease [J].
Bogdanov, MB ;
Andreassen, OA ;
Dedeoglu, A ;
Ferrante, RJ ;
Beal, MF .
JOURNAL OF NEUROCHEMISTRY, 2001, 79 (06) :1246-1249
[5]   Replicating Huntington's disease phenotype in experimental animals [J].
Brouillet, E ;
Condé, F ;
Beal, MF ;
Hantraye, P .
PROGRESS IN NEUROBIOLOGY, 1999, 59 (05) :427-468
[6]   Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia [J].
Browne, SE ;
Bowling, AC ;
MacGarvey, U ;
Baik, MJ ;
Berger, SC ;
Muqit, MMK ;
Bird, ED ;
Beal, MF .
ANNALS OF NEUROLOGY, 1997, 41 (05) :646-653
[7]   PARAQUAT - MODEL FOR OXIDANT-INITIATED TOXICITY [J].
BUS, JS ;
GIBSON, JE .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1984, 55 (APR) :37-46
[8]   The role of CSA in the response to oxidative DNA damage in human cells [J].
D'Errico, M. ;
Parlanti, E. ;
Teson, M. ;
Degan, P. ;
Lemma, T. ;
Calcagnile, A. ;
Iavarone, I. ;
Jaruga, P. ;
Ropolo, M. ;
Pedrini, A. M. ;
Orioli, D. ;
Frosina, G. ;
Zambruno, G. ;
Dizdaroglu, M. ;
Stefanini, M. ;
Dogliotti, E. .
ONCOGENE, 2007, 26 (30) :4336-4343
[9]   Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage [J].
de Waard, H ;
de Wit, J ;
Andressoo, JO ;
van Oostrom, CTM ;
Riis, B ;
Weimann, A ;
Poulsen, HE ;
van Steeg, H ;
Hoeijmakers, JHJ ;
van der Horst, GTJ .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (18) :7941-7948
[10]  
Ferrante RJ, 1997, J NEUROCHEM, V69, P2064