Star-shaped isoindigo-based small molecules as potential non-fullerene acceptors in bulk heterojunction solar cells

被引:25
作者
Liu, Xin
Xie, Yuan
Zhao, Haobin
Cai, Xinyi
Wu, Hongbin
Su, Shi-Jian [1 ]
Cao, Yong
机构
[1] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER PHOTOVOLTAIC DEVICES; OPEN-CIRCUIT VOLTAGE; ELECTRON-ACCEPTOR; DONOR MATERIALS; EFFICIENCY; PERFORMANCE; MORPHOLOGY; TRANSPORT; CHARGE; DIKETOPYRROLOPYRROLE;
D O I
10.1039/c5nj01893e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two novel, star-shaped isoindigo(II)-based small molecules with different cores of triphenylamine and benzene, namely P1 and P2, respectively, were designed and synthesized as non-fullerene acceptor materials in organic solar cells (OSCs). The impacts of the different cores combined with the II terminal groups on the optical absorption, electrochemical properties, film morphology, and solar cell performance were studied thoroughly. The two compounds possess a broad absorption covering the wavelength range of 400-650 nm and relatively high LUMO energy levels of 3.73 and 3.79 eV for P1 and P2, respectively. The power conversion efficiency (PCE) of the OSCs based on P2 as the acceptor material and P3HT as the donor material (1 : 1, w/w) is 0.19%. In contrast, a PCE of 0.81% was achieved for the device based on P1 as the acceptor and P3HT as the donor (1 : 1, w/w).
引用
收藏
页码:8771 / 8779
页数:9
相关论文
共 88 条
[1]   Material and Energy Intensity of Fullerene Production [J].
Anctil, Annick ;
Babbitt, Callie W. ;
Raffaelle, Ryne P. ;
Landi, Brian J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (06) :2353-2359
[2]   A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells [J].
Bai, Huitao ;
Cheng, Pei ;
Wang, Yifan ;
Ma, Lanchao ;
Li, Yongfang ;
Zhu, Daoben ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) :778-784
[3]   Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors [J].
Bloking, Jason T. ;
Han, Xu ;
Higgs, Andrew T. ;
Kastrop, John P. ;
Pandey, Laxman ;
Norton, Joseph E. ;
Risko, Chad ;
Chen, Cynthia E. ;
Bredas, Jean-Luc ;
McGehee, Michael D. ;
Sellinger, Alan .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5484-5490
[4]   Strain and Huckel Aromaticity: Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics [J].
Brunetti, F. G. ;
Gong, X. ;
Tong, M. ;
Heeger, A. J. ;
Wudl, Fred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (03) :532-536
[5]   Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45% [J].
Cheng, Pei ;
Ye, Long ;
Zhao, Xingang ;
Hou, Jianhui ;
Li, Yongfang ;
Zhan, Xiaowei .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1351-1356
[6]   All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor [J].
Earmme, Taeshik ;
Hwang, Ye-Jin ;
Murari, Nishit M. ;
Subramaniyan, Selvam ;
Jenekhe, Samson A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (40) :14960-14963
[7]   Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells [J].
Eftaiha, Ala'a F. ;
Sun, Jon-Paul ;
Hill, Ian G. ;
Welch, Gregory C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) :1201-1213
[8]   Polymer donor-polymer acceptor (all-polymer) solar cells [J].
Facchetti, Antonio .
MATERIALS TODAY, 2013, 16 (04) :123-132
[9]   A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells [J].
Fang, Yuan ;
Pandey, Ajay K. ;
Nardes, Alexandre M. ;
Kopidakis, Nikos ;
Burn, Paul L. ;
Meredith, Paul .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :54-59
[10]  
Fitzhugh E.West., 1997, Artists Pigments: A Handbook of Their History and Characteristics, V3