Loop grafting of Bacillus subtilis lipase A:: Inversion of enantioselectivity

被引:36
作者
Boersma, Ykelien L. [1 ]
Pijning, Tjaard [2 ]
Bosma, Margriet S. [1 ]
van der Sloot, Almer M. [3 ]
Godinho, Luis F. [1 ]
Droege, Melloney J. [4 ]
Winter, Remko T. [1 ]
van Pouderoyen, Gertie [2 ]
Dijkstra, Bauke W. [2 ]
Quax, Wim J. [1 ]
机构
[1] Univ Groningen, GUIDE, Dept Pharmaceut Biol, NL-9713 AV Groningen, Netherlands
[2] Univ Groningen, Biophys Chem Lab, NL-9747 AG Groningen, Netherlands
[3] CRG EMBL, Dept Syst Biol, Barcelona 08003, Spain
[4] ABL BV, NL-9400 AE Assen, Netherlands
来源
CHEMISTRY & BIOLOGY | 2008年 / 15卷 / 08期
关键词
D O I
10.1016/j.chembiol.2008.06.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%.
引用
收藏
页码:782 / 789
页数:8
相关论文
共 39 条
[1]   Protein engineering and applications of Candida rugosa lipase isoforms [J].
Akoh, CC ;
Lee, GC ;
Shaw, JF .
LIPIDS, 2004, 39 (06) :513-526
[2]  
[Anonymous], 1989, Molecular Cloning
[3]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[4]  
Beisson F, 2000, EUR J LIPID SCI TECH, V102, P133, DOI 10.1002/(SICI)1438-9312(200002)102:2<133::AID-EJLT133>3.3.CO
[5]  
2-O
[6]   Progress in enantioselective catalysis assessed from an industrial point of view [J].
Blaser, HU ;
Pugin, B ;
Spindler, F .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 231 (1-2) :1-20
[7]   Evolving strategies for enzyme engineering [J].
Bloom, JD ;
Meyer, MM ;
Meinhold, P ;
Otey, CR ;
MacMillan, D ;
Arnold, FH .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (04) :447-452
[8]   A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A [J].
Boersma, Ykelien L. ;
Droge, Melloney J. ;
van der Sloot, Almer M. ;
Pijning, Tjaard ;
Cool, Robbert H. ;
Dijkstra, Bauke W. ;
Quax, Wim J. .
CHEMBIOCHEM, 2008, 9 (07) :1110-1115
[9]   Industrial methods for the production of optically active intermediates [J].
Breuer, M ;
Ditrich, K ;
Habicher, T ;
Hauer, B ;
Kesseler, M ;
Stürmer, R ;
Zelinski, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (07) :788-824
[10]   Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes [J].
Brocca, S ;
Secundo, F ;
Ossola, M ;
Alberghina, L ;
Carrea, G ;
Lotti, M .
PROTEIN SCIENCE, 2003, 12 (10) :2312-2319