hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization

被引:20
作者
Houston, Paul [1 ]
Jensen, Max [2 ]
Sueli, Endre [2 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
hp-finite element methods; discontinuous Galerkin methods; least-squares finite element methods; first order systems of PDEs;
D O I
10.1023/A:1015180009979
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of hp-version discontinuous Galerkin finite element methods with least-squares stabilization for symmetric systems of first-order partial differential equations. The family includes the classical discontinuous Galerkin finite element method, with and without streamline-diffusion stabilization, as well as the discontinuous version of the Galerkin least-squares finite element method. An hp-optimal error bound is derived in the associated DG-norm. If the solution of the problem is elementwise analytic, an exponential rate of convergence under p-refinement is proved. We perform numerical experiments both to illustrate the theoretical results and to compare the various methods within the family.
引用
收藏
页码:3 / 25
页数:23
相关论文
共 23 条
[1]  
Barth TJ, 2000, LECT NOTES COMP SCI, V11, P63
[2]  
Barth TJ, 1999, LECT NOTES COMP SCI, V5, P195
[3]   hp-Version discontinuous Galerkin methods for hyperbolic conservation laws [J].
Bey, KS ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 133 (3-4) :259-286
[4]   Finite element methods of least-squares type [J].
Bochev, PB ;
Gunzburger, MD .
SIAM REVIEW, 1998, 40 (04) :789-837
[5]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[6]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[7]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[8]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[9]  
Cockburn B., 1991, ESAIM-MATH MODEL NUM, V25, P337, DOI [DOI 10.2307/2008501, DOI 10.1051/M2AN/1991250303371]
[10]   Explicit finite element methods for symmetric hyperbolic equations [J].
Falk, RS ;
Richter, GR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :935-952