1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis:: Novel fold topology revealed

被引:55
作者
Ökvist, M
Dey, R
Sasso, S
Grahn, E
Kast, P
Krengel, U
机构
[1] Chalmers Univ Technol, Dept Chem & Biosci, SE-40530 Gothenburg, Sweden
[2] Univ Oslo, Dept Chem, N-0315 Oslo, Norway
关键词
crystal structure; pathogenic bacterium; permutated fold; secreted AroQ-class chorismate mutase; transition state analog complex;
D O I
10.1016/j.jmb.2006.01.069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1483 / 1499
页数:17
相关论文
共 60 条
[1]   SECONDARY TRITIUM ISOTOPE EFFECTS AS PROBES OF THE ENZYMIC AND NON-ENZYMIC CONVERSION OF CHORISMATE TO PREPHENATE [J].
ADDADI, L ;
JAFFE, EK ;
KNOWLES, JR .
BIOCHEMISTRY, 1983, 22 (19) :4494-4501
[2]   TRANSITION-STATE STABILIZATION AND ENZYMIC CATALYSIS - KINETIC AND MOLECULAR-ORBITAL STUDIES OF REARRANGEMENT OF CHORISMATE TO PREPHENATE [J].
ANDREWS, PR ;
SMITH, GD ;
YOUNG, IG .
BIOCHEMISTRY, 1973, 12 (18) :3492-3498
[3]   REARRANGEMENT OF CHORISMATE TO PREPHENATE - USE OF CHORISMATE MUTASE INHIBITORS TO DEFINE TRANSITION-STATE STRUCTURE [J].
ANDREWS, PR ;
CAIN, EN ;
RIZZARDO, E ;
SMITH, GD .
BIOCHEMISTRY, 1977, 16 (22) :4848-4852
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   AN INHIBITOR OF CHORISMATE MUTASE RESEMBLING THE TRANSITION-STATE CONFORMATION [J].
BARTLETT, PA ;
JOHNSON, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (25) :7792-7793
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]   A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence [J].
Bekal, S ;
Niblack, TL ;
Lambert, KN .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (05) :439-446
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Directed evolution of protein enzymes using nonhomologous random recombination [J].
Bittker, JA ;
Le, BV ;
Liu, JM ;
Liu, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (18) :7011-7016
[10]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254