Identification of doping profiles in semiconductor devices

被引:36
作者
Burger, M
Engl, HW
Markowich, PA
Pietra, P
机构
[1] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[2] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[3] CNR, Ist Anal Numer, I-27100 Pavia, Italy
关键词
D O I
10.1088/0266-5611/17/6/315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the identification of doping profiles in the stationary drift-diffusion equations modelling carrier and charge transport in semiconductor devices. We develop a framework for these inverse doping problems with different possible measurements and discuss mathematical properties of the inverse problem, such as the identifiability and the type of ill-posedness. In addition, we investigate scaling limits of the drift-diffusion equations, where the inverse doping problem reduces to classical (elliptic) inverse problems. As a first concrete application we consider the identification of piecewise constant doping profiles in p-n diodes. Finally, we discuss the stable solution of the inverse doping problem by regularization methods and their numerical implementation. The theoretical statements are tested in a numerical example for a p-n diode.
引用
收藏
页码:1765 / 1795
页数:31
相关论文
共 49 条
[1]   LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ALESSANDRINI, G ;
ISAKOV, V ;
POWELL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3031-3041
[2]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[3]  
ALLESSANDRINI G, 2000, IN PRESS ANN SCUOLA
[4]   The boundary inverse problem for the Laplace equation in two dimensions [J].
Aparicio, ND ;
Pidcock, MK .
INVERSE PROBLEMS, 1996, 12 (05) :565-577
[5]   Stable determination of boundaries from Cauchy data [J].
Beretta, E ;
Vessella, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (01) :220-232
[6]   On convergence rates for the iteratively regularized Gauss-Newton method [J].
Blaschke, B ;
Neubauer, A ;
Scherzer, O .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :421-436
[7]   TWO-DIMENSIONAL EXPONENTIAL FITTING AND APPLICATIONS TO DRIFT-DIFFUSION MODELS [J].
BREZZI, F ;
MARINI, LD ;
PIETRA, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1342-1355
[8]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[9]   Stability for an inverse boundary problem of determining a part of a boundary [J].
Bukhgeim, AL ;
Cheng, J ;
Yamamoto, M .
INVERSE PROBLEMS, 1999, 15 (04) :1021-1032
[10]   Iterative regularization of a parameter identification problem occurring in polymer crystallization [J].
Burger, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :1029-1055