Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes

被引:163
作者
Gutierrez-Sanchez, Cristina [1 ]
Pita, Marcos [1 ]
Vaz-Dominguez, Cristina [1 ]
Shleev, Sergey [2 ]
De Lacey, Antonio L. [1 ]
机构
[1] CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain
[2] Malmo Univ, Fac Hlth & Soc, SE-20506 Malmo, Sweden
基金
欧洲研究理事会;
关键词
ELECTROCATALYTIC OXYGEN REDUCTION; BLUE COPPER OXIDASE; TRAMETES-HIRSUTA; BIOFUEL CELLS; DIRECT ELECTROCHEMISTRY; CARBON NANOTUBES; REDOX ENZYMES; O-2; REDUCTION; PARTICLE-SIZE; IMMOBILIZATION;
D O I
10.1021/ja307308j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct electron transfer (DET) reactions between redox enzymes and electrodes can be maximized by oriented immobilization of the enzyme molecules onto an electroactive surface modified with functionalized gold nanoparticles (AuNPs). Here, we present such strategy for obtaining a DET-based laccase (Lc) cathode for O-2 electro-reduction at low overpotentials. The stable nanostructured enzymatic electrode is based on the step-by-step covalent attachment of AuNPs and Lc molecules to porous graphite electrodes using the diazonium salt reduction strategy. Oriented immobilization of the enzyme molecules on adequately functionalized AuNPs allows establishing very fast DET with the electrode via their Cu T1 site. The measured electrocatalytic waves of O-2 reduction can be deconvoluted into two contributions. The one at lower overpotentials corresponds to immobilized Lc molecules that are efficiently wired by the AuNPs with a heterogeneous electron transfer rate constant k(0) >> 400 s(-1).
引用
收藏
页码:17212 / 17220
页数:9
相关论文
共 62 条
[1]   Direct Electron Transfer to a Metalloenzyme Redox Center Coordinated to a Monolayer-Protected Cluster [J].
Abad, Jose M. ;
Gass, Mhairi ;
Bleloch, Andrew ;
Schiffrin, David J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :10229-10236
[2]   Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase [J].
Ackermann, Yvonne ;
Guschin, Dmitrii A. ;
Eckhard, Kathrin ;
Shleev, Sergey ;
Schuhmann, Wolfgang .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (05) :640-643
[3]   Hydrogenase-coated carbon nanotubes for efficient H2 oxidation [J].
Alonso-Lomillo, M. Asuncion ;
Rudiger, Olaf ;
Maroto-Valiente, Angel ;
Velez, Marisela ;
Rodriguez-Ramos, Inmaculada ;
Munoz, F. Javier ;
Fernandez, Victor M. ;
De Lacey, Antonio L. .
NANO LETTERS, 2007, 7 (06) :1603-1608
[4]   Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE [J].
Aulenta, Federico ;
Catervi, Alessandro ;
Majone, Mauro ;
Panero, Stefania ;
Reale, Priscilla ;
Rossetti, Simona .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (07) :2554-2559
[5]  
Bartlett P. N, 2008, BIOELECTROCHEMISTRY, DOI DOI 10.1002/9780470753842
[6]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886
[7]   The "wired" laccase cathode:: High current density electroreduction of O2 to water at+0.7 V (NHE) at pH 5 [J].
Barton, SC ;
Kim, HH ;
Binyamin, G ;
Zhang, YC ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (24) :5802-5803
[8]   A chloride resistant high potential oxygen reducing biocathode based on a fungal laccase incorporated into an optimized Os-complex modified redox hydrogel [J].
Beyl, Yvonne ;
Guschin, Dmitrii A. ;
Shleev, Sergey ;
Schuhmann, Wolfgang .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (05) :474-476
[9]   Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons [J].
Blanford, Christopher F. ;
Foster, Carina E. ;
Heath, Rachel S. ;
Armstrong, Fraser A. .
FARADAY DISCUSSIONS, 2008, 140 :319-335
[10]   A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface [J].
Blanford, Christopher F. ;
Heath, Rachel S. ;
Armstrong, Fraser A. .
CHEMICAL COMMUNICATIONS, 2007, (17) :1710-1712