Semidefinite programming relaxation for nonconvex quadratic programs

被引:94
作者
Fujie, T [1 ]
Kojima, M [1 ]
机构
[1] TOKYO INST TECHNOL,DEPT MATH & COMP SCI,MEGURO KU,TOKYO 152,JAPAN
关键词
semidefinite program; relaxation method; interior-point method; nonconvex quadratic program; linear matrix inequality;
D O I
10.1023/A:1008282830093
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper applies the SDP (semidefinite programming) relaxation originally developed for a 0-1 integer program to a general nonconvex QP (quadratic program) having a linear objective function and quadratic inequality constraints, and presents some fundamental characterizations of the SDP relaxation including its equivalence to a relaxation using convex-quadratic valid inequalities for the feasible region of the QP.
引用
收藏
页码:367 / 380
页数:14
相关论文
共 29 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]   DIRECT THEOREMS IN SEMI-INFINITE CONVEX-PROGRAMMING [J].
BORWEIN, JM .
MATHEMATICAL PROGRAMMING, 1981, 21 (03) :301-318
[3]  
Boyd S., 1994, SIAM
[4]  
FREUND RM, 1994, 30294 OR MIT OP RES
[5]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[6]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[7]   RELAXATIONS OF VERTEX PACKING [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (03) :330-343
[8]  
Grotschel M., 1988, GEOMETRIC ALGORITHMS
[9]   An interior-point method for semidefinite programming [J].
Helmberg, C ;
Rendl, F ;
Vanderbei, RJ ;
Wolkowicz, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :342-361
[10]  
HELMBERG C, 1995, LECT NOTES COMPUTER, V920, P124