Templated Nanocarbons for Energy Storage

被引:663
作者
Nishihara, Hirotomo [1 ]
Kyotani, Takashi [1 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
anodic aluminum oxides; carbon inverse opals; ordered mesoporous carbons; zeolite-templated carbons; supercapacitors; ORDERED MESOPOROUS CARBON; DOUBLE-LAYER CAPACITANCE; ELECTRICAL DOUBLE-LAYER; HIGH-SURFACE-AREA; HIERARCHICAL POROUS CARBONS; CHEMICAL-VAPOR-DEPOSITION; NEGATIVE-ELECTRODE MATERIAL; CRYOGENIC HYDROGEN STORAGE; METAL-ORGANIC FRAMEWORK; HIGH-PERFORMANCE;
D O I
10.1002/adma.201201715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The template carbonization method is a powerful tool for producing carbon materials with precisely controlled structures at the nanometer level. The resulting templated nanocarbons exhibit extraordinarily unique (often ordered) structures that could never be produced by any of the conventional methods for carbon production. This review summarizes recent publications about templated nanocarbons and their composites used for energy storage applications, including hydrogen storage, electrochemical capacitors, and lithium-ion batteries. The main objective of this review is to clarify the true significance of the templated nanocarbons for each application. For this purpose, the performance characteristics of almost all templated nanocarbons reported thus far are listed and compared with those of conventional materials, so that the advantages/disadvantages of the templated nanocarbons are elucidated. From the practical point of view, the high production cost and poor mass-producibility of the templated nanocarbons make them rather difficult to utilize; however, the study of their unique, specific, and ordered structures enables a deeper insight into energy storage mechanisms and the guidelines for developing energy storage materials. Thus, another important purpose of this work is to establish such general guidelines and to propose future strategies for the production of carbon materials with improved performance for energy storage applications.
引用
收藏
页码:4473 / 4498
页数:26
相关论文
共 289 条
[41]   Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Lim, Sinmuk ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10253-10259
[42]   Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices [J].
Feng, Dan ;
Lv, Yingying ;
Wu, Zhangxiong ;
Dou, Yuqian ;
Han, Lu ;
Sun, Zhenkun ;
Xia, Yongyao ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :15148-15156
[43]   Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors [J].
Fernandez, J. A. ;
Morishita, T. ;
Toyoda, M. ;
Inagaki, M. ;
Stoeckli, F. ;
Centeno, T. A. .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :675-679
[44]   Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite [J].
Fernández-Saavedra, R ;
Aranda, P ;
Ruiz-Hitzky, E .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (01) :77-82
[45]   Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate [J].
Florusse, LJ ;
Peters, CJ ;
Schoonman, J ;
Hester, KC ;
Koh, CA ;
Dec, SF ;
Marsh, KN ;
Sloan, ED .
SCIENCE, 2004, 306 (5695) :469-471
[46]   Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content [J].
Frackowiak, E ;
Lota, G ;
Machnikowski, J ;
Vix-Guterl, C ;
Béguin, F .
ELECTROCHIMICA ACTA, 2006, 51 (11) :2209-2214
[47]   Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J].
Fuertes, AB ;
Pico, F ;
Rojo, JM .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :329-336
[48]   Templated mesoporous carbons for supercapacitor application [J].
Fuertes, AB ;
Lota, G ;
Centeno, TA ;
Frackowiak, E .
ELECTROCHIMICA ACTA, 2005, 50 (14) :2799-2805
[49]   Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor [J].
Fuertes, AB ;
Centeno, TA .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (10) :1079-1083
[50]   The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons [J].
Gadiou, R ;
Saadallah, SE ;
Piquero, T ;
David, P ;
Parmentier, J ;
Vix-Guterl, C .
MICROPOROUS AND MESOPOROUS MATERIALS, 2005, 79 (1-3) :121-128