Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion

被引:119
作者
Holm, DD
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICA D | 1999年 / 133卷 / 1-4期
关键词
D O I
10.1016/S0167-2789(99)00093-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate equations for the slow time dynamics of fluid motion that self consistently account for the effects of the variability upon the mean. The time-average effects of the fluctuations introduce nonlinear dispersion that acts to spatially smooth the transport velocity of the mean flow relative to its circulation or momentum velocity, by the inversion of a Helmholtz operator whose length scale corresponds to the covariance of the fluctuations. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 269
页数:55
相关论文
共 44 条
[1]   EXACT THEORY OF NON-LINEAR WAVES ON A LAGRANGIAN-MEAN FLOW [J].
ANDREWS, DG ;
MCINTYRE, ME .
JOURNAL OF FLUID MECHANICS, 1978, 89 (DEC) :609-646
[2]  
ANDREWS DG, 1978, J FLUID MECH, V95, P796
[3]  
[Anonymous], 1971, STAT FLUID DYNAMICS
[4]  
BATCHELOR GK, 1970, INTRO FLUID DYNAMICS, P276
[5]  
BENNETT AF, 1996, STOCHASTIC MODELLING, P1
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[8]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[9]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[10]  
CHEN S, IN PRESS PHYS FLUIDS