The Camassa-Holm equations and turbulence

被引:182
作者
Chen, S [1 ]
Foias, C
Holm, DD
Olson, E
Titi, ES
Wynne, S
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Mech Engn, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Aerosp Engn, Irvine, CA 92697 USA
[7] Univ Calif Los Alamos Natl Lab, Inst Geophys & Planetary Phys, Los Alamos, NM 87545 USA
来源
PHYSICA D | 1999年 / 133卷 / 1-4期
关键词
Camassa-Holm equations; turbulent channel and pipe flows;
D O I
10.1016/S0167-2789(99)00098-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will survey our results on the Camassa-Holm equations and their relation to turbulence as discussed in S. Chen, C. Foias, D.D. Helm, E. Olson, E.S. Titi, S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett 81 (1998) 5338. S. Chen, C. Foias, D.D. Helm, E. Olson, E.S. Titi, S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, in press. In particular we will provide a more detailed mathematical treatment of those equations for pipe flows which yield accurate predictions of turbulent flow profiles for very large Reynolds numbers. There are many facts connecting the Camassa-Holm equations to turbulent fluid flows. The dimension of the attractor agrees with the heuristic argument based on the Kolmogorov statistical theory of turbulence. The statistical properties of the energy spectrum agree in numerical simulation with the Kolmogorov power law. Furthermore, comparison of mean flow profiles for turbulent flow in channels and pipes given by experimental and numerical data show acceptable agreement with the profile of the corresponding solution of the Camassa-Holm equations. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 65
页数:17
相关论文
共 20 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], APPL MECH REV
[3]   New perspectives in turbulence: Scaling laws, asymptotics, and intermittency [J].
Barenblatt, GI ;
Chorin, AJ .
SIAM REVIEW, 1998, 40 (02) :265-291
[4]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[5]  
CHEN S, IN PRESS PHYS FLUIDS
[6]  
CHEN S, UNPUB 3D DNS CAMASSA
[7]   ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 30 (03) :284-296
[8]  
Dean R.B., 1978, T ASME, V100, P215
[9]   FLUIDS OF DIFFERENTIAL TYPE - CRITICAL-REVIEW AND THERMODYNAMIC ANALYSIS [J].
DUNN, JE ;
RAJAGOPAL, KR .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1995, 33 (05) :689-729
[10]   THERMODYNAMICS, STABILITY, AND BOUNDEDNESS OF FLUIDS OF COMPLEXITY-2 AND FLUIDS OF SECOND GRADE [J].
DUNN, JE ;
FOSDICK, RL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 56 (03) :191-252