Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

被引:186
作者
Onozuka, K
Ding, B [1 ]
Tsuge, Y
Naka, T
Yamazaki, M
Sugi, S
Ohno, S
Yoshikawa, M
Shiratori, S
机构
[1] Keio Univ, Fac Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[2] SNT Ltd, Kawasaki, Kanagawa 2120054, Japan
[3] Bridgestone Corp, Div Res & Dev, Tokyo 1878531, Japan
关键词
D O I
10.1088/0957-4484/17/4/030
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanotibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DME Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 mu m has a maximum value of 4.14%.
引用
收藏
页码:1026 / 1031
页数:6
相关论文
共 31 条
[1]   Effect of morphology on electron drift mobility in porous TiO2 [J].
Aduda, BO ;
Ravirajan, P ;
Choy, KL ;
Nelson, J .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2004, 6 (03) :141-147
[2]   Printable anodes for flexible organic solar cell modules [J].
Aernouts, T ;
Vanlaeke, P ;
Geens, W ;
Poortmans, J ;
Heremans, P ;
Borghs, S ;
Mertens, R ;
Andriessen, R ;
Leenders, L .
THIN SOLID FILMS, 2004, 451 :22-25
[3]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[4]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[5]   A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique [J].
Dai, HQ ;
Gong, J ;
Kim, H ;
Lee, D .
NANOTECHNOLOGY, 2002, 13 (05) :674-677
[6]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[7]   Layer-by-layer structured films of TiO2 nanoparticles and poly(acrylic acid) on electrospun nanofibres [J].
Ding, B ;
Kim, J ;
Kimura, E ;
Shiratori, S .
NANOTECHNOLOGY, 2004, 15 (08) :913-917
[8]   Titanium dioxide nanoribers prepared by using electrospinning method [J].
Ding, B ;
Kim, CK ;
Kim, HY ;
Se, MK ;
Park, SJ .
FIBERS AND POLYMERS, 2004, 5 (02) :105-109
[9]   Morphology and crystalline phase study of electrospun TiO2-SiO2 nanofibres [J].
Ding, B ;
Kim, H ;
Kim, C ;
Khil, M ;
Park, S .
NANOTECHNOLOGY, 2003, 14 (05) :532-537
[10]   Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization:: Efficiency versus film thickness [J].
Gómez, M ;
Magnusson, E ;
Olsson, E ;
Hagfeldt, A ;
Lindquist, SE ;
Granqvist, CG .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 62 (03) :259-263