Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling

被引:33
作者
Arsenault, Louis-Francois [1 ,2 ]
Semon, Patrick [1 ,2 ]
Tremblay, A. -M. S. [1 ,2 ,3 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada
[3] Canadian Inst Adv Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; MEAN-FIELD THEORY; HUBBARD-MODEL; ANDERSON MODEL; SELF-ENERGY; SYSTEMS; TRANSITION; TRANSPORT;
D O I
10.1103/PhysRevB.86.085133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamical mean-field theory approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of noninteracting electrons. Iterated perturbation theory (IPT) has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact continuous-time quantum Monte Carlo (CTQMC) solver, here we show that the standard implementation of IPT fails away from half-fillingwhen the interaction strength is much larger than the bandwidth. We propose a slight modification to the IPT algorithm that replaces one of the equations by the requirement that double occupancy calculated with IPT gives the correct value. We call this method IPT-D. We recover the Fermi liquid ground state away from half-filling. The Fermi liquid parameters, density of states, chemical potential, energy, and specific heat on the fcc lattice are calculated with both IPT-D and CTQMC as benchmark examples. We also calculated the resistivity and the optical conductivity within IPT-D. Particle-hole asymmetry persists even at coupling twice the bandwidth. A generalization to the multiorbital case is suggested. Several algorithms that speed up the calculations are described in appendixes.
引用
收藏
页数:16
相关论文
共 40 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]  
ARSENAULT L, UNPUB
[3]   Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections [J].
Bergeron, Dominic ;
Hankevych, Vasyl ;
Kyung, Bumsoo ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2011, 84 (08)
[4]   Cellular dynamical mean-field theory for the one-dimensional extended Hubbard model [J].
Bolech, CJ ;
Kancharla, SS ;
Kotliar, G .
PHYSICAL REVIEW B, 2003, 67 (07)
[5]   Cluster-dynamical mean-field theory of the density-driven Mott transition in the one-dimensional Hubbard model [J].
Capone, M ;
Civelli, M ;
Kancharla, SS ;
Castellani, C ;
Kotliar, G .
PHYSICAL REVIEW B, 2004, 69 (19) :195105-1
[6]   Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices [J].
De Leo, Lorenzo ;
Bernier, Jean-Sebastien ;
Kollath, Corinna ;
Georges, Antoine ;
Scarola, Vito W. .
PHYSICAL REVIEW A, 2011, 83 (02)
[7]   Generalization of the iterative perturbation theory and metal-insulator transition in multi-orbital Hubbard bands [J].
Fujiwara, T ;
Yamamoto, S ;
Ishii, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (04) :777-780
[8]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[9]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[10]   Continuous-time Monte Carlo methods for quantum impurity models [J].
Gull, Emanuel ;
Millis, Andrew J. ;
Lichtenstein, Alexander I. ;
Rubtsov, Alexey N. ;
Troyer, Matthias ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :349-404