Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices

被引:35
作者
De Leo, Lorenzo [1 ]
Bernier, Jean-Sebastien [1 ]
Kollath, Corinna [1 ,2 ]
Georges, Antoine [1 ,3 ]
Scarola, Vito W. [4 ]
机构
[1] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[3] Coll France, F-75005 Paris, France
[4] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
关键词
HIGH-TEMPERATURE SERIES; CONDENSED-MATTER PHYSICS; MOTT INSULATOR; FERMIONS;
D O I
10.1103/PhysRevA.83.023606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods-dynamical mean-field theory and high-temperature series-and perform comparative benchmarks to delimit their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e. g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of a recently proposed cooling procedure, based on spatial entropy separation, by applying this method to an idealized model.
引用
收藏
页数:17
相关论文
共 53 条
[1]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[2]   Cooling fermionic atoms in optical lattices by shaping the confinement [J].
Bernier, Jean-Sebastien ;
Kollath, Corinna ;
Georges, Antoine ;
De Leo, Lorenzo ;
Gerbier, Fabrice ;
Salomon, Christophe ;
Koehl, Michael .
PHYSICAL REVIEW A, 2009, 79 (06)
[3]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[4]   Monte Carlo study of the two-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, Barbara ;
Soeyler, Sebnem Guenes ;
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW A, 2008, 77 (01)
[5]   Entropy Exchange in a Mixture of Ultracold Atoms [J].
Catani, J. ;
Barontini, G. ;
Lamporesi, G. ;
Rabatti, F. ;
Thalhammer, G. ;
Minardi, F. ;
Stringari, S. ;
Inguscio, M. .
PHYSICAL REVIEW LETTERS, 2009, 103 (14)
[6]   Condensed-matter physics - The mad dash to make light crystals [J].
Cho, Adrian .
SCIENCE, 2008, 320 (5874) :312-313
[7]   Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices [J].
Dare, A.-M. ;
Raymond, L. ;
Albinet, G. ;
Tremblay, A.-M. S. .
PHYSICAL REVIEW B, 2007, 76 (06)
[8]   Trapping and Cooling Fermionic Atoms into Mott and Neel States [J].
De Leo, Lorenzo ;
Kollath, Corinna ;
Georges, Antoine ;
Ferrero, Michel ;
Parcollet, Olivier .
PHYSICAL REVIEW LETTERS, 2008, 101 (21)
[9]   Fermi-Hubbard Physics with Atoms in an Optical Lattice [J].
Esslinger, Tilman .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :129-152
[10]   Dark optical traps for cold atoms [J].
Friedman, N ;
Kaplan, A ;
Davidson, N .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 48, 2002, 48 :99-151