Characterization of in vitro transcription amplification linearity and variability in the low copy number regime using External RNA Control Consortium (ERCC) spike-ins

被引:11
作者
Kralj, Jason G. [1 ]
Salit, Marc L. [1 ]
机构
[1] NIST, Div Biochem Sci, Gaithersburg, MD 20899 USA
关键词
In vitro transcription; ERCC; RNA amplification; Amplification bias; CDNA; QUANTITIES; SAMPLES;
D O I
10.1007/s00216-012-6445-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using spike-in controls designed to mimic mammalian mRNA species, we used the quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the performance of in vitro transcription (IVT) amplification process of small samples. We focused especially on the confidence of the transcript level measurement, which is essential for differential gene expression analyses. IVT reproduced gene expression profiles down to approximately 100 absolute input copies. However, a RT-qPCR analysis of the antisense RNA showed a systematic bias against low copy number transcripts, regardless of sequence. Experiments also showed that noise increases with decreasing copy number. First-round IVT preserved the gene expression information within a sample down to the 100 copy level, regardless of total input sample amount. However, the amplification was nonlinear under low total RNA input/long IVT conditions. Variability of the amplification increased predictably with decreasing input copy number. For the small enrichments of interest in typical differential gene expression studies (e.g., twofold changes), the bias from IVT reactions is unlikely to affect the results. In limited cases, some transcript-specific differential gene expression values will need adjustment to reflect this bias. Proper experimental design with reasonable detection limits will yield differential gene expression capability even between low copy number transcripts.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 18 条
[1]  
Arnold S, 2001, BIOTECHNOL BIOENG, V72, P548, DOI 10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO
[2]  
2-2
[3]   The external RNA controls consortium: a progress report [J].
Baker, SC ;
Bauer, SR ;
Beyer, RP ;
Brenton, JD ;
Bromley, B ;
Burrill, J ;
Causton, H ;
Conley, MP ;
Elespuru, R ;
Fero, M ;
Foy, C ;
Fuscoe, J ;
Gao, XL ;
Gerhold, DL ;
Gilles, P ;
Goodsaid, F ;
Guo, X ;
Hackett, J ;
Hockett, RD ;
Ikonomi, P ;
Irizarry, RA ;
Kawasaki, ES ;
Kaysser-Kranich, T ;
Kerr, K ;
Kiser, G ;
Koch, WH ;
Lee, KY ;
Liu, CM ;
Liu, ZL ;
Lucas, A ;
Manohar, CF ;
Miyada, G ;
Modrusan, Z ;
Parkes, H ;
Puri, RK ;
Reid, L ;
Ryder, TB ;
Salit, M ;
Samaha, RR ;
Scherf, U ;
Sendera, TJ ;
Setterquist, RA ;
Shi, LM ;
Shippy, R ;
Soriano, JV ;
Wagar, EA ;
Warrington, JA ;
Williams, M ;
Wilmer, F ;
Wilson, M .
NATURE METHODS, 2005, 2 (10) :731-734
[4]   Quantitative analysis of mRNA amplification by in vitro transcription [J].
Baugh, L. R. ;
Hill, A. A. ;
Brown, E. L. ;
Hunter, Craig P. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (05)
[5]   Applicability of RNA standards for evaluating RT-qPCR assays and platforms [J].
Devonshire, Alison S. ;
Elaswarapu, Ramnath ;
Foy, Carole A. .
BMC GENOMICS, 2011, 12
[6]   Biases in Illumina transcriptome sequencing caused by random hexamer priming [J].
Hansen, Kasper D. ;
Brenner, Steven E. ;
Dudoit, Sandrine .
NUCLEIC ACIDS RESEARCH, 2010, 38 (12) :e131
[7]   From molecular to modular cell biology [J].
Hartwell, LH ;
Hopfield, JJ ;
Leibler, S ;
Murray, AW .
NATURE, 1999, 402 (6761) :C47-C52
[8]   Single-cell cDNA microarray profiling of complex biological processes of differentiation [J].
Kurimoto, Kazuki ;
Saitou, Mitinori .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2010, 20 (05) :470-477
[9]   Limitations of mRNA amplification from small-size cell samples [J].
Nygaard, V ;
Holden, M ;
Loland, A ;
Langaas, M ;
Myklebost, O ;
Hovig, E .
BMC GENOMICS, 2005, 6 (1)
[10]   Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling [J].
Nygaard, V ;
Hovig, E .
NUCLEIC ACIDS RESEARCH, 2006, 34 (03) :996-1014