Modulational instability in Bose-Einstein condensates in optical lattices

被引:292
作者
Konotop, VV
Salerno, M
机构
[1] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[4] Ist Nazl Fis Mat, I-84081 Baronissi, SA, Italy
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 02期
关键词
D O I
10.1103/PhysRevA.65.021602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A self-consistent theory of a cylindrically shaped Bose-Einstein condensate (BEC) periodically modulated by a laser beam is presented. We show, both analytically and numerically, that modulational instability/stability is the mechanism by which wave functions of soliton type can be generated in a cylindrically shaped BEC subject to a one-dimensional optical lattice. The theory explains why bright solitons can exist in a BEC with positive scattering length and why condensates with negative scattering length can be stable and give rise to dark solitary pulses.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 16 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[3]   Bose-Einstein condensates in spatially periodic potentials [J].
Berg-Sorensen, K ;
Molmer, K .
PHYSICAL REVIEW A, 1998, 58 (02) :1480-1484
[4]   Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential [J].
Bronski, JC ;
Carr, LD ;
Deconinck, B ;
Kutz, JN .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1402-1405
[5]   Output coupling of Bose condensates from atomic tunnel arrays: a numerical study [J].
Chiofalo, ML ;
Succi, S ;
Tosi, MP .
PHYSICS LETTERS A, 1999, 260 (1-2) :86-93
[6]   Bose-Einstein condensates in an optical lattice [J].
Choi, DI ;
Niu, Q .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2022-2025
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains [J].
Dauxois, T ;
Ruffo, S ;
Torcini, A .
PHYSICAL REVIEW E, 1997, 56 (06) :R6229-R6232
[9]   ENVELOPE-FUNCTION APPROACH FOR THE ELECTRODYNAMICS OF NONLINEAR PERIODIC STRUCTURES [J].
DESTERKE, CM ;
SIPE, JE .
PHYSICAL REVIEW A, 1988, 38 (10) :5149-5165
[10]   Structural instability of vortices in Bose-Einstein condensates -: art. no. 140403 [J].
García-Ripoll, JJ ;
Molina-Terriza, G ;
Pérez-García, VM ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :140403/1-140403/4