Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential

被引:283
作者
Bronski, JC
Carr, LD [1 ]
Deconinck, B
Kutz, JN
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.86.1402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new family of stationary solutions to the cubic nonlinear Schrodinger equation with an elliptic function potential. In the limit of a sinusoidal potential our solutions model a quasi-one-dimensional dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided that the ratio of the height of the variations of the condensate to its de offset is, small enough, both trivial phase and nontrivial phase solutions are shown to he stable. Recent developments allow for experimental investigation of these predictions.
引用
收藏
页码:1402 / 1405
页数:4
相关论文
共 21 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[3]   Nonlinear Schrodinger flow in a periodic potential [J].
Barra, F ;
Gaspard, P ;
Rica, S .
PHYSICAL REVIEW E, 2000, 61 (05) :5852-5863
[4]   Bose-Einstein condensates in spatially periodic potentials [J].
Berg-Sorensen, K ;
Molmer, K .
PHYSICAL REVIEW A, 1998, 58 (02) :1480-1484
[5]  
BONGS K, CONDMAT007381
[6]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[7]  
BRONSKI JC, IN PRESS PHYS REV E
[8]   Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond [J].
Carr, LD ;
Leung, MA ;
Reinhardt, WP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3983-4001
[9]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611
[10]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063611-063611