Postischemic hypothermia - A critical appraisal with implications for clinical treatment

被引:204
作者
Colbourne, F [1 ]
Sutherland, G [1 ]
Corbett, D [1 ]
机构
[1] MEM UNIV NEWFOUNDLAND, FAC MED, DEPT BASIC MED SCI, ST JOHNS, NF A1C 5S7, CANADA
关键词
ischemia; postischemic hypothermia; maturation phenomenon; CA1; memory; review;
D O I
10.1007/BF02740655
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The use of hypothermia to mitigate cerebral ischemic injury is not new. From early studies, it has been clear that cooling is remarkably neuroprotective when applied during global or focal ischemia. In contrast, the value of postischemic cooling is typically viewed with skepticism because of early clinical difficulties and conflicting animal data. However, more recent rodent experiments have shown that a protracted reduction in temperature of only a few degrees Celsius can provide sustained behavioral and histological neuroprotection. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute clinical stroke. A thorough mechanistic understanding of postischemic hypothermia would lead to a more selective and effective therapy. Unfortunately, few studies have investigated the mechanisms by which postischemic cooling conveys its beneficial effect. The purpose of this article is to evaluate critically the effects of postischemic temperature changes with a comparison to some current drug therapies. This article will stimulate new research into the mechanisms of lengthy postischemic hypothermia and its potential as a therapy for stroke patients.
引用
收藏
页码:171 / 201
页数:31
相关论文
共 289 条
[41]   SELECTIVE BRAIN COOLING IN HUMANS - FANCY OR FACT [J].
CABANAC, M .
FASEB JOURNAL, 1993, 7 (12) :1143-1146
[42]   HYPOTHERMIA PREVENTS THE ISCHEMIA-INDUCED TRANSLOCATION AND INHIBITION OF PROTEIN-KINASE-C IN THE RAT STRIATUM [J].
CARDELL, M ;
BORISMOLLER, F ;
WIELOCH, T .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (05) :1814-1817
[43]   PROTEIN-KINASE-C IS TRANSLOCATED TO CELL-MEMBRANES DURING CEREBRAL-ISCHEMIA [J].
CARDELL, M ;
BINGREN, H ;
WIELOCH, T ;
ZIVIN, J ;
SAITOH, T .
NEUROSCIENCE LETTERS, 1990, 119 (02) :228-232
[44]   TIME-COURSE OF THE TRANSLOCATION AND INHIBITION OF PROTEIN-KINASE-C DURING COMPLETE CEREBRAL-ISCHEMIA IN THE RAT [J].
CARDELL, M ;
WIELOCH, T .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (04) :1308-1314
[45]   PROTECTION AGAINST HIPPOCAMPAL CA1 CELL LOSS BY POSTISCHEMIC HYPOTHERMIA IS DEPENDENT ON DELAY OF INITIATION AND DURATION [J].
CARROLL, M ;
BEEK, O .
METABOLIC BRAIN DISEASE, 1992, 7 (01) :45-50
[46]   Role of oxidants in ischemic brain damage [J].
Chan, PH .
STROKE, 1996, 27 (06) :1124-1129
[47]   THE ALPHA-CA2+/CALMODULIN KINASE-II - A BIDIRECTIONAL MODULATOR OF PRESYNAPTIC PLASTICITY [J].
CHAPMAN, PF ;
FRENGUELLI, BG ;
SMITH, A ;
CHEN, CM ;
SILVA, AJ .
NEURON, 1995, 14 (03) :591-597
[48]   Apoptotic features of selective neuronal death in ischemia, epilepsy and gp120 toxicity [J].
CharriautMarlangue, C ;
AggounZouaoui, D ;
Represa, A ;
BenAri, Y .
TRENDS IN NEUROSCIENCES, 1996, 19 (03) :109-114
[49]   EFFECT OF MILD HYPERTHERMIA ON THE ISCHEMIC INFARCT VOLUME AFTER MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT [J].
CHEN, H ;
CHOPP, M ;
WELCH, KMA .
NEUROLOGY, 1991, 41 (07) :1133-1135
[50]   THE EFFECTS OF POSTISCHEMIC HYPOTHERMIA ON THE NEURONAL INJURY AND BRAIN METABOLISM AFTER FOREBRAIN ISCHEMIA IN THE RAT [J].
CHEN, H ;
CHOPP, M ;
VANDELINDE, AMQ ;
DERESKI, MO ;
GARCIA, JH ;
WELCH, KMA .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1992, 107 (02) :191-198