A dispersion modelling system SILAM and its evaluation against ETEX data

被引:135
作者
Sofiev, M
Siljamo, P
Valkama, I
Ilvonen, M
Kukkonen, J
机构
[1] Finnish Meteorol Inst, FIN-00561 Helsinki, Finland
[2] Tech Res Ctr Finland, FIN-02044 Helsinki, Finland
关键词
dispersion modelling; model validation; emergency preparedness;
D O I
10.1016/j.atmosenv.2005.09.069
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents the SILAM dispersion modelling system that has been developed for solving various forward and inverse dispersion problems. The current operational version is based on a Lagrangian dispersion model that applies an iterative advection algorithm and a Monte Carlo random-walk diffusion representation. The system can utilize meteorological data from either the HIRLAM or ECMWF numerical weather prediction models. We present an evaluation of SILAM against the data of the European Tracer Experiment (ETEX). The model showed an overall time correlation coefficient of 0.6 (over 150 stations), with specific values for the two ETEX measurement arcs of 0.75 and 0.74, respectively. The number of well-reproduced observation sites are 55, 37, and 40-for a Figure of Merit in Time of > 0.2, a correlation coefficient of > 0.7, and mean observed and modelled values being within a factor of 2, respectively. We have also investigated the sensitivity of the model to the meteorological input data and model setup. The most important factors with regard to the model performance were (i) the selection of the meteorological input data set and (ii) the method used for the atmospheric boundary layer height estimation. The study allowed selection of the optimum setup for the operational model configuration. We also tried to find explanations for the successes and failures of the specific methodologies in order to facilitate broader conclusions on their applicability in emergency dispersion modelling. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:674 / 685
页数:12
相关论文
共 44 条
[1]   Numerical modelling of transport, dispersion, and deposition - validation against ETEX-1, ETEX-2 and Chernobyl [J].
Brandt, J ;
Christensen, JH ;
Frohn, LM ;
Zlatev, Z .
ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (6-7) :521-531
[2]  
Clark M.J., 1989, TRANSPORT DEPOSITION
[3]  
EEROLA K, 1990, FMI METEOROLOGICAL P, V15
[4]   Ensemble dispersion forecasting - Part I: concept, approach and indicators [J].
Galmarini, S ;
Bianconi, R ;
Klug, W ;
Mikkelsen, T ;
Addis, R ;
Andronopoulos, S ;
Astrup, P ;
Baklanov, A ;
Bartniki, J ;
Bartzis, JC ;
Bellasio, R ;
Bompay, F ;
Buckley, R ;
Bouzom, M ;
Champion, H ;
D'Amours, R ;
Davakis, E ;
Eleveld, H ;
Geertsema, GT ;
Glaab, H ;
Kollax, M ;
Ilvonen, M ;
Manning, A ;
Pechinger, U ;
Persson, C ;
Polreich, E ;
Potemski, S ;
Prodanova, M ;
Saltbones, J ;
Slaper, H ;
Sofiev, MA ;
Syrakov, D ;
Sorensen, JH ;
Van der Auwera, L ;
Valkama, I ;
Zelazny, R .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (28) :4607-4617
[5]   Ensemble dispersion forecasting - Part II: application and evaluation [J].
Galmarini, S ;
Bianconi, R ;
Addis, R ;
Andronopoulos, S ;
Astrup, P ;
Bartzis, JC ;
Bellasio, R ;
Buckley, R ;
Champion, H ;
Chino, M ;
D'Amours, R ;
Davakis, E ;
Eleveld, H ;
Glaab, H ;
Manning, A ;
Mikkelsen, T ;
Pechinger, U ;
Polreich, E ;
Prodanova, M ;
Slaper, H ;
Syrakov, D ;
Terada, H ;
Van der Auwera, L .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (28) :4619-4632
[6]  
GRAZIANI G, 2000, RTMOD REAL TIME MODE
[7]  
GRAZIANI G, 1998, OFFICE OFFICIAL PUBL, pL2985
[8]   A PRELIMINARY MULTIPLE RESISTANCE ROUTINE FOR DERIVING DRY DEPOSITION VELOCITIES FROM MEASURED QUANTITIES [J].
HICKS, BB ;
BALDOCCHI, DD ;
MEYERS, TP ;
HOSKER, RP ;
MATT, DR .
WATER AIR AND SOIL POLLUTION, 1987, 36 (3-4) :311-330
[9]   MEASURED PARTICLE BOUND ACTIVITY SIZE-DISTRIBUTION, DEPOSITION VELOCITY, AND ACTIVITY CONCENTRATION IN RAINWATER AFTER THE CHERNOBYL ACCIDENT [J].
HORN, HG ;
BONKA, H ;
MAQUA, M .
JOURNAL OF AEROSOL SCIENCE, 1987, 18 (06) :681-684
[10]  
Huber P. J., 1981, ROBUST STAT