Entropy and correlation functions of a driven quantum spin chain

被引:143
作者
Cherng, RW [1 ]
Levitov, LS
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevA.73.043614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.
引用
收藏
页数:15
相关论文
共 38 条
[1]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[2]   THE FISHER-HARTWIG CONJECTURE AND GENERALIZATIONS [J].
BASOR, EL ;
TRACY, CA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 177 (1-3) :167-173
[3]   Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3 [J].
Bauerle, C ;
Bunkov, YM ;
Fisher, SN ;
Godfrin, H ;
Pickett, GR .
NATURE, 1996, 382 (6589) :332-334
[4]   THE ASYMPTOTIC-BEHAVIOR OF TOEPLITZ DETERMINANTS FOR GENERATING-FUNCTIONS WITH ZEROS OF INTEGRAL ORDERS [J].
BOTTCHER, A ;
SILBERMANN, B .
MATHEMATISCHE NACHRICHTEN, 1981, 102 :79-105
[5]   S-MATRIX FOR GENERALIZED LANDAU-ZENER PROBLEM [J].
BRUNDOBLER, S ;
ELSER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05) :1211-1227
[6]   Evolution of entanglement entropy in one-dimensional systems [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :15-38
[7]   Observation of spontaneous flux generation in a multi-Josephson-junction loop [J].
Carmi, R ;
Polturak, E ;
Koren, G .
PHYSICAL REVIEW LETTERS, 2000, 84 (21) :4966-4969
[8]   Dynamics of the superfluid to Mott-insulator transition in one dimension [J].
Clark, SR ;
Jaksch, D .
PHYSICAL REVIEW A, 2004, 70 (04) :043612-1
[9]   CORRELATORS IN THE HEISENBERG XX0 CHAIN AS FREDHOLM DETERMINANTS [J].
COLOMO, F ;
IZERGIN, AG ;
KOREPIN, VE ;
TOGNETTI, V .
PHYSICS LETTERS A, 1992, 169 (04) :243-247
[10]   TOEPLITZ MATRICES GENERATED BY LAURENT SERIES EXPANSION OF AN ARBITRARY RATIONAL FUNCTION [J].
DAY, KM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 206 (MAY) :224-245