Evolution of entanglement entropy in one-dimensional systems

被引:1000
作者
Calabrese, P
Cardy, J
机构
[1] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[2] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2005年
关键词
conformal field theory; integrable spin chains (vertex models); quantum phase transitions (theory); entanglement in extended quantum systems (theory);
D O I
10.1088/1742-5468/2005/04/P04010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the unitary time evolution of the entropy of entanglement of a one-dimensional system between the degrees of freedom in an interval of length l and its complement, starting from a pure state which is not an eigenstate of the Hamiltonian. We use path integral methods of quantum field theory as well as explicit computations for the transverse Ising spin chain. In both cases, there is a maximum speed v of propagation of signals. In general the entanglement entropy increases linearly with time t up to t = l/2v, after which it saturates at a value proportional to l, the coefficient depending on the initial state. This behaviour may be understood as a consequence of causality.
引用
收藏
页码:15 / 38
页数:24
相关论文
共 55 条
[1]   Dynamics of entanglement in one-dimensional spin systems [J].
Amico, L ;
Osterloh, A ;
Plastina, F ;
Fazio, R ;
Massimo Palma, G .
PHYSICAL REVIEW A, 2004, 69 (02) :24
[2]   THEORY OF LAYERED ISING MODELS .2. SPIN CORRELATION-FUNCTIONS PARALLEL TO LAYERING [J].
AUYANG, H ;
MCCOY, B .
PHYSICAL REVIEW B, 1974, 10 (09) :3885-3905
[3]   A subsystem-independent generalization of entanglement [J].
Barnum, H ;
Knill, E ;
Ortiz, G ;
Somma, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :107902-1
[4]   STATISTICAL MECHANICS OF XY MODEL .1 [J].
BAROUCH, E ;
MCCOY, BM ;
DRESDEN, M .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (03) :1075-+
[5]   STATISTICAL MECHANICS OF XY MODEL .3. [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A, 1971, 3 (06) :2137-&
[6]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]  
CALSAMIGLIA J, 2005, QUANTPH0502017
[9]  
CHEN Y, 2004, QUANTPH0407228
[10]   Entanglement in spin chains and lattices with long-range Ising-type interactions -: art. no. 097203 [J].
Dür, W ;
Hartmann, L ;
Hein, M ;
Lewenstein, M ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (09)